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Chapter 1

Introduction

The dream of all theoretical physicists around the world is to develop a theory that

provides a unified description of the four fundamental forces. Over the last century,

many developments have been made in this direction, mainly based on the hypothesis

that our spacetime has extra dimensions curled up in a very small compact manifold.

Assuming this, spacetime symmetries in the compact dimensions can be interpreted as

internal symmetries from the lower-dimensional point of view. Using the reversed ar-

gument, one may unify the internal and spacetime symmetries of a lower-dimensional

theory into spacetime symmetries of a higher-dimensional system. As a result of this,

the eleven-dimensional M-theory and the ten-dimensional string theory came up to

be the best candidates for unification. But if these theories are indeed fundamental

and they describe our four-dimensional universe, there should be a way to extract

lower-dimensional theories from them. The first to introduce such a method were

Kaluza and Klein (with many contributions by Pauli) and although there have been

many developments and advances since their days, the general procedure bears their

names.

The Kaluza-Klein dimensional reduction will be studied in detail in chapter 2. We

first present the general idea of this method, which is nothing but a compactification

on a compact Manifold M together with a consistent truncation to the massless sector

(in other words, we expand the higher-dimensional fields into fourier modes, of which

only the massless ones are included in the effective, lower-dimensional theory). Special

3



emphasis is given to the scalar lagrangian emerging from the lower-dimensional theory

as it carries all the information about the residual symmetries. We express it in terms

of the so-called coset representative V , which is a matrix representing points on the

scalar manifold (the scalar manifold is the manifold parameterized by the scalar

fields of the theory), and we note that it is manifestly invariant under the action of

a symmetry group G

V → VΛ, L → L, (1.1)

where ΛεG. But in order for VΛ still to represent points on the scalar manifold, we

have to do a compensating local transformation O

V → OVΛ, L → L, (1.2)

where OεK and K is the maximal compact subgroup of G. We also note that G

has a transitive action on the scalar manifold and thus we deduce that the latter

can in fact be identified with the coset manifold G/K with a global G symmetry.

In the last section of chapter 2, we investigate the evolution of the supergravity

cosets(summarized in table 2.1) through the dimensions using Dynkin diagrams.

In the next chapter, we explore stationary solutions of supergravity. The reason

why we restrict our discussion to this kind of solution and do not study supergravity

solutions in general is just a matter of taste. We introduce dimensional reduction

along the time direction, which differs from the usual reduction described in the

previous chapter only on the fact that the original theory is now reduced on a manifold

with a Minkowskian signature instead of Euclidean (this gives rise to some extra

minus signs). The coset manifold in this case is given by G/K∗, where K∗ is the non-

compact form of K, and the metric GAB(φ) on it is now indefinite. This recasts the

problem in terms of a particular type of a non-linear sigma model with gravitational

constraints. Then, we specialize our discussion for four-dimensional theories and we

explore in detail the four-dimensional, Einstein-Maxwell example by solving explicitly

the equations of motion that arise(up to simplifying assumptions). Surprisingly, we

end up with the well-known Reissner-Nordström, charged black hole solution.
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In chapter 4, we explore the properties of the solutions of N-extended, four-

dimensional supergravity theories that are already G4-symmetric in 4 dimensions.

We define the Komar mass m, NUT charge n and the electric qI and magnetic pI

charges related to the four-dimensional field strengths. Upon reduction, the symme-

try group is enhanced to G and because of the G-invariance of the three-dimensional

theory, we can introduce a “conserved” charge matrix C that satisfies the so-called

characteristic equation. As we will discuss later, this equation selects out of all G-

orbits the acceptable ones and restricts the scalar charges to be functions of (m, n,

qI , pI) only. The charge matrix C is associated to a charge state |C >, which trans-

forms as a Spin∗(2N) chiral spinor (for N-extended supergravity, the group K∗ is the

product of Spin∗(2N) with a symmetry group determined by the matter content of

the theory). For asymptotically flat solutions, the BPS condition is equivalent to an

algebraic “Dirac” equation

(εiaai + Ωaβε
β
i a

i)|C >= 0, (1.3)

where ai and ai are the lowering and raising operators and εia and εai are the asymptotic

supersymmetric parameters.

In the final chapter, we will briefly discuss the attractor formalism. A central

question in black hole thermodynamics concerns the statistical interpretation of the

black hole entropy. String theory has provided new insights here, which enable the

identification of the black hole entropy as the logarithm of the degeneracy of states

dQ of charge Q belonging to a certain system of microstates; in string theory these

microstates are provided by the states of wrapped brane configurations of given mo-

mentum and winding. But, there is the dangerous possibility that the entropy of

the black hole may depend on parameters that are continuous, namely the value of

the scalar fields at infinity(ie the so-called moduli). This would be a problem since

the number of microstates with given charges is an integer that should not depend

on parameters that can be varied continuously -it should only depend on quantities

that take discrete values, such as the electric and magnetic charges and the angular
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momenta. As it turns out, the entropy of a black hole is determined by the behavior

of the solution at the horizon of the black hole (not at infinity) and the values of the

scalars there φ|horizon are completely determined by discrete quantities, such as the

charges. In other words, φ is determined by a differential equation whose solution

flows to a definite value at the horizon, regardless of its boundary value at infinity.

This solution is called an attractor and its existence is necessary for a microscopic

description of the black hole entropy to be possible.

It should be emphasized that the work presented here is by no mean original.
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Chapter 2

Kaluza-Klein Dimensional

Reduction on S1 and Tn

The Kaluza-Klein(KK) compactification of the standard extra dimensions was ex-

tensively studied in [1, 2, 3, 4]. In the following sections, we will discuss only some

basic aspects of this theory. We will restrict ourselves to studying reduction only on

the circle S1 and on the n-dimensional torus T n. At the same time, we will discuss

in detail the duality symmetries of the dimensionally reduced theories and the scalar

coset manifold in various dimensions. We will not discuss dimensional reduction on

other, more complicated manifolds (eg the Calabi-Yau threefold CY3), brane-world

Kaluza-Klein reduction and we will leave aside compactification in the presence of

fermions(fermions will be consistently ignored through out this discussion). We will

also not talk about solution oxidation.

2.1 Kaluza-Klein Dimensional Reduction on S1

Dimensional Reduction of the Einstein-Hilbert Lagrangian on S1:

For simplicity, we will first study the reduction on a circle S1. As all the theories

to be considered are theories of gravity plus additional terms, a good starting point

would be to demonstrate how the dimensional reduction of gravity proceeds. In

D+1 dimensions, the Einstein gravity is described by the so-called Einstein-Hilbert
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Lagrangian

L =
√
−ĝR̂, (2.1)

where R̂ is the Ricci scalar and ĝ represents the determinant of the metric in D+1 di-

mension (throughout this dissertation, we will denote higher-dimensional fields with

a hat). Now, split the (D+1)-dimensional coordinates x̂M̂ into (xM , z), where z is

the dimension to be compactified on a circle of radius L and xM parameterizes the

D-dimensional spacetime transverse to z. Then, expand all the components of the

metric as fourier series

ĝM̂N̂(x, z) =
∑
n

ĝ
(n)

M̂N̂
(x) expinz/L, (2.2)

with the constraint ĝM̂N̂(x, 0) = ĝM̂N̂(x, 2πnL) due to the circle. By doing this, we

just replace the higher-dimensional metric with an infinite number of fourier fields

labeled by n. One may argue that the modes corresponding to n=0 are massless,

while the fields with n 6= 0 have enormous masses m = n
L

(if L is really small) and

thus can be neglected in the lower-dimensional theory. The argument goes as follows:

let φ̂ be a massless scalar field in D+1 dimensions satisfying the Klein-Gordon(K-G)

field equation

∂M̂∂
M̂ φ̂ = 0.

If we compactify the z coordinate as before and then we fourier expand φ̂ in terms of

lower-dimensional fields φn, we obtain:

φ̂(x, z) =
∑
n

φn(x)einz/L.

Substituting this fourier expansion in the K-G equation, we find that φn(x) satisfies

the equation

∂M∂
Mφn − n2

L2φn = 0.
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This equation can be recognized as the K-G equation of a massive scalar field φn(x) in

D spacetime dimensions. Thus, we conclude that when a (D+1)-dimensional scalar

is compactified on a circle, we acquire a tower of D-dimensional scalar fields that are

z-independent and have mass equal to n/L. The usual Kaluza-Klein approach is to

assume that the radius, L, of the compactification circle S1 is very small so that we

do not observe the extra dimension. This means that the masses, m, of the modes

that correspond to n 6= 0 are extremely large and accordingly will not play any role in

the effective D-dimensional theory.

The argument stated above can not be applied naively for the metric field, as ĝM̂N̂

can not be interpreted as a metric anymore from the D-dimensional point of view.

Due to the splitting of the D + 1 coordinates, the components of the metric can be

decomposed as shown below

ĝM̂N̂ =

 ĝzz ĝMz

ĝzM ĝMN

 =

 φ AM

AM ĝMN

 , (2.3)

and thus, from the lower-dimensional perspective, the metric ĝM̂N̂ is seen as a D-

dimensional metric ĝMN , a KK gauge field AM = ĝMz and a dilaton scalar field

φ = ĝzz (from a more mathematical point of view, this split can also be seen as a

result of basic group theory [5] -see Appendix). Taking this fact into account, we

decompose the metric ĝM̂N̂ into fourier modes as shown in table 2.1 [2]. We note

that the infinite tower of massive modes, corresponding to n 6= 0, is constituted by

massive spin-2 particles, that acquire there mass via a higher-order Higgs mechanism.

Just like before, their masses are enormous and thus they can be neglected in the

effective action.

In other words, the Kaluza-Klein reduction is a compactification together with a

consistent truncation to the massless sector. By the term consistent truncation, we

understand a restriction on the variables such that the solutions to the equations of

9



n D+1 DOF D Field DOF Physical spectrum

gMN
(D−2)(D−1)

2
− 1 massless graviton

0 ĝ
(0)

M̂N̂

(D−1)(D)
2

− 1 AM D-2 massless KK vector field

φ 1 massless scalar

g
(n)
MN

(D−2)(D−1)
2

− 1

0 ĝ
(n)

M̂N̂

(D−1)(D)
2

− 1 A(n)
M D-2 massive, spin-2 graviton

φ(n) 1

Table 2.1: Decomposition of the (D+1)-dimensional graviton into D-dimensional

fields and the physical spectrum

motion for the restricted variables are also solutions to the equations for the unre-

stricted variables. This ensures that the solutions of the lower-dimensional theory lie

in a particular class of solutions of the higher-dimensional theory. Our ansatz is sim-

ply to take the components of the metric ĝ
(0)

M̂N̂
to be independent of the compactified

coordinates, just like φ0(x) was z-independent.

In order to proceed, we need to redefine the fields emerging from the reduction of

the metric; although the field definitions given by (2.3) are the most logical ones, they

are not the most convenient. A more appropriate choice, that respects the symmetries

of the system, is given in the literature [1, 2, 3, 4]: we choose to parameterize the

(D+1)-dimensional metric in terms of the lower dimensional fields, all of which are

required to be z-independent, as

dŝ2 = e2aφds2 + e2βφ(dz +Aµdxµ)2. (2.4)

a and β are constants, free to choose in a way that suits us. Using this ansatz and

setting β = −(D− 2)a in order to get a “clean” D-dimensional gravity term, we find

that(up to a total derivative)

L =
√
−ĝR(ĝ) =

√
−g
(
R(g)−(D−1)(D−2)a2∇Mφ∇Mφ−1

4
e−2(D−1)aφFMNFMN

)
,

(2.5)

where F = dA. In order to get the usual normalization for the dilaton φ, we have to
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make an appropriate choice of a

a2 =
1

2(D − 1)(D − 2)
. (2.6)

L =
√
−ĝR(ĝ) =

√
−g
(
R(g)− 1

2
∇Mφ∇Mφ− 1

4
e−2(D−1)aφFMNFMN

)
(2.7)

In the language of differential forms, equations (2.7) can be rewritten in the following

form.

L = R ? 1− 1

2
? dφ ∧ dφ− 1

2
e−2(D−1)aφ ? F[2] ∧ F[2] (2.8)

Thus, the reduction of the (D+1)-dimensional Einstein-Hilbert gravity gives rise to a

D-dimensional Einstein-Maxwell-Scalar system, whose dynamics are governed by the

above lagrangian.

At this point, we need to pause and draw attention on two things. Firstly, in

order to simplify the calculation of the spin connection, curvature and Ricci scalar

R̂, we need to use a veilbein basis. According to [1], an appropriate choice is the

following.

êα = eaφeα, êz = eβφ(dz +A) (2.9)

R̂ = e−2aφ
(
R− 1

2
(∂µφ∂

µφ) + (D − 3)a∂µ∂
µφ
)
− 1

4
e−2DaφF2 (2.10)

The second point has to do with the consistency of the truncation. If we compute

the equation of motion of the reduced theory with respect to the scalar fields φ, we

will get the following result.

∂µ∂
µφ = −1

2
(D − 1)e−2(D−1)aφF2

Therefore, it would have been inconsistent to assume an ansatz (2.4) such that φ = 0,

as the source term on the right-hand side of the above equation forces φ to be non-

trivial. Having this in mind, one may now ask whether is consistent to neglect the

massive sector as this is effectively equivalent to setting all the massive fields to zero.

To answer this question we need to understand that each fourier mode corresponds

to a certain U(1) irreducible representation characterized by the integer number n
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(remember that the symmetry group of the circle is U(1)). If n = 0, the field cor-

responds to a U(1) singlet and if n 6= 0, the mode corresponds to a non-singlet.

Consequently, in this case, the truncation to the massless sector is guaranteed to be

consistent as we have ignored all the non-singlet fields. Note that in other cases, the

consistency is not so trivial to prove.

Symmetries of the Dimensionally Reduced Einstein-Hilbert Lagrangian:

First of all, we note that the Einstein-Hilbert lagrangian, given by (2.1), has a

general coordinate covariance. The relevant transformations, in their infinitesimal

form, are the following

δĝµ̂ν̂ = ξ̂P∂P ĝµ̂ν̂ + ĝP̂ ν̂∂µξ̂
P + ĝµ̂P̂∂ν ξ̂

P , δx̂µ̂ = −ξ̂µ̂, (2.11)

where ξ̂µ̂ are arbitrary functions of D+1 coordinates. In order to determine the

symmetries of the D-dimensional theory, we observe that the most general transfor-

mations that preserves the metric ansatz (2.4) are

ξ̂µ = ξµ(x), ξ̂z = cz + λ(x), (2.12)

where ξµ and λ are functions of the D-dimensional coordinates and c is a constant.

Thus, using the equations (2.11) and (2.12), we calculate δĝµν , δĝµz and δĝzz. Keeping

in mind the definitions of the lower-dimensional fields gµν , Aµ and φ, we can determine

their infinitesimal transformations. This procedure was followed in [1, 3]; the authors

concluded that the lower-dimensional theory (2.7) has a general coordinate covariance

involving D coordinates (described by ξµ(x)), a local U(1) gauge invariance of the

KK vector field (described by λ(x)) and yet another symmetry related to constant

shifts of the dilaton accompanied with appropriate constant scaling of the KK vector

field (described by c).

φ→ φ+ c, Aµ → ec(D−1)aAµ (2.13)

Accordingly, we conclude that the symmetries of the reduced theory are just a residue

of the symmetries of the initial theory; the original general coordinate covariance
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involves coordinate reparametrization by arbitrary functions of D+1 coordinates,

while the symmetries of the D-dimensional theory involve only D coordinates.

Another symmetry that needs to be discussed is the rescaling symmetry of the

higher-dimensional equation of motion, ie of the Einstein equation R̂MN−1
2
R̂ĝMN = 0.

Under the action of this global symmetry, the metric and the relevant curvature

quantities are rescaled as follows

ĝM̂N̂ → k2ĝM̂N̂ R̂M̂
N̂P̂ Q̂

→ R̂M̂
N̂P̂ Q̂

√
−ĝ → kD+1

√
−ĝ R̂M̂N̂ → R̂M̂N̂

R̂→ k−2R̂.

(2.14)

In infinitesimal form, the above transformations are translates into δĝM̂N̂ = 2αĝM̂N̂ ,

where α is a constant. Of course, this is not a valid symmetry of the relevant La-

grangian; the Lagrangian is uniformly rescaled.

If we take a linear combination of the dilaton shifting symmetry(seen as a resid-

ual symmetry of the higher-dimensional metric) and the higher-dimensional metric

resealing

δĝM̂N̂ = cδz
M̂
ĝN̂z + cδz

N̂
ĝM̂z + 2αĝM̂N̂ (2.15)

for appropriate value of α = −c/(D−1), we get a purely internal symmetry of the re-

duced Einstein-Hilbert lagrangian that leaves the lower-dimensional metric invariant

δgµν = 0 and acts only on the other fields; this symmetry is the so-called R-symmetry.

The “orthogonal” combination, given by α = −c, is a scaling symmetry that acts on

all the lower-dimensional fields and resales them according to the number of indices

that they carry; for instance

gMN → k2gMN , Am → kAm. (2.16)

This is the so-called “trombone” symmetry.

Dimensional Reduction of Form Fields on S1:

Now, one needs to establish the reduction ansatz for the (D+1)-dimensional an-

tisymmetric gauge field Â[n−1], where the index n-1 in square brackets denotes that
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Â is an (n-1)-index form field. As all the indices are antisymmetrized, only one of

them can be equal to z and thus, in D dimensions, we will have an (n-1)-form and an

(n-2)-form gauge field (this can also be resulted using group theory arguments [5]).

Once again, we will adopt the notation of [1].

Â[n−1] = A[n−1] +A[n−2] ∧ dz, ⇒ F̂[n] = dÂ[n−1] = dA[n−1] + dA[n−2] ∧ dz (2.17)

This parametrization is not the most convenient one as, upon dimensional reduction,

it will lead to the appearance of terms with the gauge field A[n−1] undifferentiated

(these are the so-called Chern-Simons terms). A more convenient choice of ansatz is

obtained if we add and subtract a term from equation (2.17), so that we get:

F̂[n] = dA[n−1]−dA[n−2]∧A[1]+dA[n−2]∧(A[1]+dz) = F[n]+F[n−1]∧(A[1]+dz), (2.18)

where A is the KK vector emerging from the reduction of the metric (2.4), F[n] =

dA[n−1] − dA[n−2] ∧ A[1] and F[n−1] = dA[n−2]. Now, keeping this in mind, we can

dimensionally reduce the kinetic term of an n-form field strength in (D+1) dimensions.

L = −
√
−ĝ

2n!
F̂ 2

[n] = −
√
−g

2n!
e−2(n−1)aφF 2

[n] −
√
−g

2n!
e−2(D−n)aφF 2

[n−1] (2.19)

In the language of differential forms, equation (2.19) can be rewritten in the following

form.

L = −1

2
e−2(D−1)aφ ? F[n] ∧ F[n] −

1

2
e−2(D−n)aφ ? F[n−1] ∧ F[n−1] (2.20)

Dimensional Reduction of the eleven-dimensional Supergravity on S1:

The eleven-dimensional supergravity is the field theory whose bosonic sector is

comprised of the metric tensor (ie a graviton) and a 4-form field strength and whose

fermionic sector contains only one fermionic field with spin 3/2(ie a gravitino). If

we constraint ourselves just to the bosonic sector, the dynamics of the system are

controlled by the following Lagrangian density

L = R ? 1− 1

2
? F[4] ∧ F[4] + L(11)

FFA, (2.21)
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where, as usual, R is the Ricci scalar, F[4] is the 4-form field strength and L(11)
FFA is the

Chern-Simons term in 11 dimensions. By compactifying the above theory on S1, we

will obtain the bosonic sector of the ten-dimensional type IIA supergravity theory,

given by the following lagrangian,

L = R?1− 1

2
?dφ∧dφ− 1

2
e

3
2
φ ?F[2]∧F[2]−

1

2
e

1
2
φ ?F[4]∧F[4]−

1

2
e−φ ?F[3]∧F[3] +L(10)

FFA,

(2.22)

where F[4] = dA[3]−dA[2]∧A[1] is the 4-form field strength, F[3] = dA[2], A[1] is the KK

vector field emerging from the reduction of the metric and L(10)
FFA is the Chern-Simons

term in 10 dimensions.

Observe that the reduced theory is invariant under the action of the “trombone”

symmetry

gMN → k2gMN , Am1...mn → knAm1...mn .

It can also be shown that the equations of motion of the eleven-dimensional super-

gravity symmetry respect the rescaling symmetry (2.14). Thus, we may conclude

that the ten-dimensional supergravity has a global internal symmetry(generated by

c) such that

φ→ φ+ c, A[3] → e−
c
4A[3],

A[1] → e−
3c
4 A[1], A[2] → e

c
2A[2]. (2.23)

2.2 Kaluza-Klein Dimensional Reduction on T n

There are two equivalent ways to dimensionally reduce a (D+n)-dimensional theory

on an n-dimensional Euclidean torus T n = S1X...XS1:

• According to [2], the torus reduction can be done in just one step using the

following metric ansatz

ds2
D+n = e2aφds2

D + e2bφMmn(dxm +Am)(dxn +An), (2.24)

where Mmn is a symmetric matrix of scalars with unit determinant detM = 1,
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m,n= (D+1) ,..,(D+n),

a =
n

2(D + n− 2)(D − 2)
, b = −(D − 2)a

n
.

• We can successively repeat Kaluza-Klein dimensional reduction on a circle S1

for arbitrary n times [1].

In what follows, we will concentrate on the second approach.

At each reduction step, for example the i’th step, one obtains a KK vector field

Ai[1] and a dilaton φ from the reduction of the metric. We will also have 0-forms Ai[0]j,

called axions, coming from the reduction of the KK vector field Ai[1], where i < j (the

KK vector field is created at the i’th step and then is reduced to give an axion at the

j’th step). In total, from the metric reduction, we obtain n dilatons, n vector fields

and n(n − 1)/2 axions (axions always appear differentiated). In addition, we have

to consider how p-forms in D+n dimensions reduce. We know from our previous

discussion that upon dimensional reduction on S1, a p-form gives a p-form and a

(p-1)-form. If i < p, at the i’th step of reduction on a torus, we will have a p-form,

(p-1)-forms,(p-2)-forms,...,(p-i)-forms. If i > p, we will have a p-form, (p-1)-forms,(p-

2)-forms,..., 0-forms with varying multiplicities.

Reduction of the eleven-dimensional Supergravity on T n:

The bosonic sector of the eleven-dimensional supergravity is given by (2.21). If we

reduced the 3-form contained in the supergravity multiplet, we will get the potentials

A[3], Ai[2], Aij[1] and Aijk[0], where the indices i,j,k are antisymmetrized and can

be thought of as directions on the reduction torus. According to [3], the reduced

supergravity theory in 11-n dimensions will be given by the following lagrangian.

L = R ? 1− 1
2
? d
−→
φ ∧ d

−→
φ − 1

2

∑
i

e
−→
b i
−→
φ ? F i[2] ∧ F i[2] −

1
2

∑
i<j

e
−→
b ij
−→
φ ? F ij[1] ∧ F ij[1]

−1
2
e
−→a
−→
φ ? F[4] ∧ F[4] − 1

2

∑
i

e
−→ai
−→
φ ? Fi[3] ∧ Fi[3] − 1

2

∑
i<j

e
−→aij
−→
φ ? Fij[2] ∧ Fij[2]

−1
2

∑
i<j<k

e
−−→aijk
−→
φ ? Fijk[1] ∧ Fijk[1] + L(11−n)

FFA ,

(2.25)
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where L(11−n)
FFA is the Chern-Simons term in (11-D) dimensions, given in [3], and −→a ,

−→a i,
−→a ij,

−→a ijk,
−→
b i and

−→
b ij are the dilaton vectors. These vectors are constants and

they characterize the strength of the gauge fields-dilatons couplings. Out of them,

only −→a and −→a i are independent.

−→
b i = −−→a i +−→a ,

−→
b ij = −−→a i +−→a j,

−→a ij = −→a i +−→a j −−→a , −→a ijk = −→a i +−→a j +−→a k − 2−→a ,
(2.26)

−→a i · −→a j = 2δij + 22(6−D)
(D−2)

,

−→a · −→a = 2(11−D)
(D−2)

,

−→a · −→a i = 2(8−D)
(D−2)

.

(2.27)

Note that the form fields in equation (2.25) are pure exterior derivatives of the relevant

gauge fields plus KK corrections; their explicit forms can be found in [3, 4]. For

instance,

F̂[4] = F[4] + F i
[3] ∧ hi + 1

2
F ij

[2] ∧ hi ∧ hj + 1
6
F ijk

[1] ∧ hi ∧ hj ∧ hk, (2.28)

where hi = dzi +Ai[1] +Ai[0]jdz
j.

The metric in D dimensions is related to the metric in 11 dimensions in the

following way

ds2
11 = e

1
3
−→g ·
−→
φ ds2

D +
∑
i

e2−→γi ·
−→
φ (hi)2, (2.29)

where

−→g = 3(s1, s2, . . . , s11−D), si =
√

2
(10−i)(9−i)

−→γ i = 1
6
−→g − 1

2

−→
f i,

−→
f i = (0, .., 0, (10− i)si, si+1, ..s11−D)

Symmetries of the Reduced eleven-dimensional Supergravity:

Firstly, we will discuss the symmetries of the terms coming from the reduction of

the eleven-dimensional gravity term, ie the first four terms of the lagrangian (2.25):

• The initial Einstein-Hilbert term has a general coordinate covariance of 11 coor-

dinates, while the gravity term of the reduced theory has a general coordinate
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covariance involving arbitrary functions of only 11-n coordinates. Generally,

the story goes just like our discussion for the S1 case with the only difference

being that now we have n coordinates zi and thus x̂µ̂ is split as (xµ, zi). We first

identify the higher-dimensional transformations that respect the metric ansatz

x̂µ(x, z) = ξµ(x), x̂i(x, z) = Λi
jz
j + λi(x), (2.30)

(Λi
j are constants) and then, using the equations (2.11) and (2.30), we calculate

δĝµν , δĝµi and δĝij. Having in mind the definitions of the lower-dimensional

fields that emerge from ĝµ̂ν̂ , we find their infinitesimal transformations. Fol-

lowing this procedure, we conclude that the terms coming from the reduction

of the initial Einstein-Hilbert lagrangian exhibit local general coordinate co-

variance involving 11-n coordinates (described by ξµ(x)) and local U(1) gauge

invariance of the n KK vector fields (described by λi(x)). The only parameters

left to be discussed are the Λi
j, which are a generalization of the parameter c

we talked about in the previous section.

• In the case of the S1 reduction, we have seen that if we took a linear combination

of the symmetry generated by c and the rescalling symmetry of the higher-

dimensional Einstein equation, we could extract a purely internal symmetry of

the lower-dimensional theory that leaves the metric invariant, while shifting the

dilaton and rescalling the gauge fields by a constant. Something similar to this

happens when reducing on T n. If we combine the generalized version of the

dilaton shifting symmetry, given by the group Λi
jεGL(n,R), and the scaling

symmetry of the 11-dimensional Einstein equation, we will extract an internal

symmetry of the terms coming from the reduction of the initial Einstein-Hilbert

lagrangian that leaves the metric invariant and describes a constant shift of the

dilatons along with appropriate rescaling of the form fields.

But, are these symmetries valid symmetries of the total lagrangian (2.25)? As

we have seen in the case of S1 reduction, the reduced eleven-dimensional theory was

invariant under the dilaton field shifting symmetry. As this symmetry, in the context
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of the T n reduction, has been generalized into a global GL(n,R) = R×SL(n,R), we

expect the reduced eleven-dimensional symmetry to be invariant under the action of

this group. This is indeed a general feature of reduced theories of gravity coupled to

other matter fields. Note that one usually can only be sure of the SL(n,R) part of

the symmetry, as the existence of the R factor depends on having the extra scaling

symmetry of the higher-dimensional equations of motion. We should also note that,

in low dimensions, we typically have bigger symmetries as there exists a symmetry

enhancement due to the dualization of the form fields to scalars. In those cases, the

full details of the maximal supergravity reduction, including the Chern-Simons term

given in [1, 3], are necessary in order to specify the symmetry of the reduced theory.

Application: Reduction of the eleven-dimensional Supergravity on T 2

A special case of what has been discussed above is the reduction on T 2. Now, the

reduction of the (D+2)-dimensional metric gives a D-dimensional metric, two KK

gauge field denoted by Aiµ (i=1,2), a two-component dilaton vector
−→
φ and one axion

χ -see Appendix. Thus, the reduced Einstein-Hilbert lagrangian becomes

L = R ? 1− 1

2
? d
−→
φ ∧ d

−→
φ − 1

2

∑
i

e
−→c i
−→
φ ? Fi[2] ∧ Fi[2] −

1

2
e
−→c
−→
φ ? dχ ∧ dχ, (2.31)

where F1
[2] = dA1

[1] − dχ ∧ A2
[1], F2

[2] = dA2
[1] and ~c,~ci are constant functions of D

~c1 =
(
−
√

2D
D−1

,−
√

2
(D−1)(D−2)

)
,

~c =
(
−
√

2D
D−1

,
√

2(D−2)
(D−1)

)
,

~c2 =
(
0,−

√
2(D−1)
(D−2)

)
.

(2.32)

If we perform an appropriate rotation of φ1 and φ2

φ = −1
2

√
2D

(D−1)
φ1 + 1

2

√
2(D−2)
(D−1)

φ2,

ϕ = −1
2

√
2(D−2)
(D−1)

φ1 − 1
2

√
2D

(D−1)
φ2,

(2.33)

the above lagrangian simplifies a lot

L = R ? 1− 1
2
? dφ ∧ dφ− 1

2
? dϕ ∧ dϕ− 1

2
eφ+
√
D/(D−2)ϕ ? F1

[2] ∧ F1
[2]

−1
2
e−φ+sqrD/(D−2)ϕ ? F2

[2] ∧ F2
[2] −

1
2
e2φ ? dχ ∧ dχ.

(2.34)
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Note that the (D+2)-dimensional metric is related to the D-dimensional metric via

ds2
D+2 = e

− 2ϕ√
D(D−2)ds2

D+e

√
(D−2)
D

ϕ

(
eφ(dz1 +A1

(1) +χdz2)2 +e−φ(dz2 +A2
(1))

2

)
. (2.35)

The field ϕ parameterizes the volume of the torus, as it appears in the metric ansatz

as an overall multiplicative factor of the internal compactified metric, and thus, is

called a “breathing” mode. One the other hand, φ and χ characterize the shape of

the torus: φ determines the radii of the two circles of the torus and χ determines the

angle between them. All three of them, ϕ, φ, χ, determine completely the torus.

If we now restrict our attention to the scalar lagrangian of the reduced Einstein-

Hilbert lagrangian, we note that ϕ decouples from the other 2 fields.

L =
1

2
? dφ ∧ dφ− 1

2
? dϕ ∧ dϕ− 1

2
e2φ ? dχ ∧ dχ (2.36)

Combine χ and φ into a complex scalar field τ = χ + ie−φ. The above lagrangian

becomes

L = −1

2
? dϕ ∧ dϕ− 1

2τ 2
2

? dτ ∧ dτ, (2.37)

where τ2 = e−φ. Now, it is easy to determine the symmetries of the scalar lagrangian:

• A global shift symmetry of ϕ: ϕ→ ϕ+c, accompanied by appropriate constant

scalings of the other potentials.

• Also, the scalar lagrangian is invariant under τ → aτ+b
cτ+d

, where ad − bc = 1.

This symmetry can be recognized as the SL(2, R).

Therefore, the overall global symmetry of the scalar lagrangian is R × SL(2, R) =

GL(2, R). But, is this symmetry a valid symmetry of the full lagrangian (2.31)? If

we make the following field redefinition

A1
[1] → A1

[1] + χA2
[1] ⇒ F1

[2] = dA1
[1] + χA2

[1],

we note that (2.31) is left invariant under the action of SL(2, R), if the KK gauge

fields transformation as follows A2
[1]

A1
[1]

 −→ (ΛT )−1

 A2
[1]

A1
[1]

 , (2.38)
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where ΛεSL(2, R). Thus, the symmetry of the reduced Einstein-Hilbert lagrangian

is the same as the symmetry of the scalar lagrangian. This is a general result: the

symmetry of the full lagrangian is determined just by looking at the scalar lagrangian.

One may now ask what is the symmetry of the reduced eleven-dimensional su-

pergravity on T 2. The answer here is really simple if one observes that the reduced

eleven-dimensional theory and the reduced Einstein-Hilbert lagrangian share the same

scalar Lagrangian (upon reduction on T 2, the eleven-dimensional 3-form does not

generate any scalars). Therefore, the symmetry is also GL(2, R).

Another general result is that the scalars transform non-linearly, while the higher-

rank potentials lie in linear representations of the symmetry group. For instance,

when compactifying the eleven-dimensional supergravity on the torus, we find that

the one 1-form A[1] and the one 3-form A[3] transform as singlets, while the two

2-forms Ai[2] and the two 1-forms Ai[1] transform as doublets.

2.3 Scalar Coset Manifolds: a scan through vari-

ous dimensions

In order to acquire a better understanding of the structure of the global symmetry,

Cremmer, Julia, Lü and Pope studied the scalar lagrangians emerging from super-

gravity theories in various dimensions [1, 3]. In this section, we will present some of

their work.

Let us start our discussion by looking at the SL(2,R) example of the previous

section. The generators of the SL(2,R) group satisfy the following commutation

relations

[h,E±] = ±2E±, [E+, E−] = h, (2.39)

where h is the generator forming the Cartan subalgebra and (E+, E−) are the raising

and lowering operators (SL(2,R) is a rank 1 group). A convenient way of representing
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these generators is the following

h =

 1 0

0 −1

 , E+ =

 0 1

0 0

 , E− =

 0 0

1 0

 . (2.40)

Now, we can calculate the coset representative V and the Maurer-Cartan form dVV−1.

V = e
1
2
φheχE+ =

 e
1
2
φ χe

1
2
φ

0 e−
1
2
φ

 , (2.41)

dVV−1 =

 1
2
dφ eφdχ

0 −1
2
dφ

 =
1

2
dφh+ eφdχE+, (2.42)

where V is a matrix representing points on the scalar manifold. By the term scalar

manifold, we mean the manifold parameterized by the scalar fields of the theory -in

this case, by φ and χ. Using the above definitions, we can calculate the followings

M = VTV =

 eφ eφχ

eφχ e−φ + eφχ2

 , M−1 =

 e−φ + eφχ2 −eφχ

−eφχ eφ

 . (2.43)

The scalar lagrangian, given by (2.37), can be translated into this language as

L = ∂µϕ∂
µϕ+

1

4
tr(∂M−1∂M). (2.44)

Now, the global SL(2,R) symmetry is manifested as

V → VΛ,

M→ ΛTMΛ,

L → L,

(2.45)

where ΛεSL(2, R). The only problem with the above derivation is that although

V is upper-triangular, VΛ is not and thus it does not correspond to points on the

scalar manifold anymore. In order to fix this, we have to do a compensating local

transformation O that acts on V from the left. The transformation law is now the

following

V → V ′ = OVΛ, (2.46)
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where O is by definition a matrix such that V ′ is upper-triangular. This is a unique,

orthogonal matrix OεO(2) that depends on φ and χ. It is easy to show that the

transformation (2.46), which is equivalent to the transformations of the scalar fields

given in the previous section, leaves the scalar lagrangian invariant.

Note that for any pair of fixed φ and χ, we can get any other pair using the

SL(2,R) transformations. In other words, SL(2,R) has a transitive action on the scalar

manifold and thus, we may specify points on the scalar manifold by the coset SL(2,R)
O(2)

.

Consequently, we deduce that we can identify the dilaton-axion scalar manifold with

the coset manifold accompanied by a global SL(2,R) symmetry.

Now, one may consider what happens upon dimensional reductions on a higher-

dimensional torus. There, the story is much more complicated as there are additional

axionic fields coming from the reduction of the KK gauge field and additional dilatons.

For instance, if we descend from D=11 down to D=8 on T 3, we have 3 dilatons
−→
φ

emerging from the reduction of the metric, 3 axions Aij[0] coming from the reduction

of the KK gauge field and another axion A[0] coming from the reduction of the 3-form.

The scalar lagrangian controlling the interactions of the fields mentioned above is

L = −1

2
? dφ1 ∧ dφ1 −

1

2

∑
i=2,3

?dφi ∧ dφi −
1

2

∑
i<j

e
−→
b ij ·
−→
φ ? F ij[1] ∧ F ij[1]

− 1

2
e2φ1 ? F[1] ∧ F[1], (2.47)

where F1
[1]2 = dA1

[0]2, F2
[1]3 = dA2

[0]3 and F1
[1]3 = dA1

[0]3−A2
[0]3dA1

[0]2. If we do an orthog-

onal transformation, we can make the dilaton vectors become
−→
b 12 = (0, 1,

√
3),
−→
b 23 =

(0, 1,−
√

3) and b13 = (0, 2, 0). Thus, we see that the axion A[0] and the dilaton φ1

decouple from the rest of the scalars. If we compare the part of the lagrangian that

controls their dynamics with the equation (2.37), we conclude that these fields pa-

rameterize an SL(2,R)
O(2)

coset manifold with a global SL(2,R) symmetry. This leaves

the question of understanding the part of the coset parameterized by the remaining 5

scalars. In order to answer this, we have to define quantities similar to those defined

for the T 2 example.

By observing the second and third terms in equation (2.47), we expect to find
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an SL(3,R) symmetry involving only (φ2, φ3) (we recognize
−→
b ij to be the positive

roots of SL(3,R) -the simple ones are b12 and b23). We may introduce positive-root

generators Ej
i , with i < j, associated with the root vectors and a Cartan generator

vector
−→
h such that

[~h,Ej
i ] =

−→
b ijE

j
i , [Ej

i , E
k
l ] = δjkE

l
i − δliE

j
k. (2.48)

A convenient choice for these generators is the following. The three raising/lowering

operators are given by

E2
1 =


0 1 0

0 0 0

0 0 0

 , E3
2 =


0 0 0

0 0 1

0 0 0

 , E3
1 =


0 0 1

0 0 0

0 0 0

 , (2.49)

while the two Cartan operators are

h1 = diag(1, 0,−1), h2 =
1√
3
diag(1,−2, 1). (2.50)

To find the coset representative V , we just exponentiate the Cartan and the positive-

root generators.

V = e
1
2

−→
φ ·
−→
h eA

2
3[0]

E3
2eA

1
3[0]

E3
1eA

1
2[0]

E2
1

dVV−1 = 1
2
d
−→
φ ·
−→
h +

∑
i<j

e
−→
b ij ·
−→
φFi

j[1]
Eji

M = VTV

(2.51)

Note that the exponentials in equation (2.51) do not commute among each other

because of the Baker-Campbell-Hausdorf formula. Choosing a certain way to organize

the exponentials corresponds to a certain parametrization of the coset space. Now,

it is straight forward to show that the scalar lagrangian (2.47) can be written as

L =
1

4
tr(∂M−1∂M). (2.52)

We consider a general transformation ΛεSL(3, R) acting on the coset representative

V from the right and a compensating transformation OεO(3) acting on V from the

24



left

V → V ′ = OVΛ, (2.53)

such that V ′ is upper-triangular just like V itself; this means that V ′ can be interpreted

as a different point on the coset manifold. The global SL(3,R) symmetry is now

manifested

M→ ΛTMΛ L → L. (2.54)

To sum up, in the case of compactification of the eleven-dimensional supergravity on

T 3, the seven-dimensional coset manifold is SL(3,R)
O(3)

× SL(2,R)
O(2)

and the total symmetry

of the lagrangian is SL(2, R)× SL(3, R).

But, is it always that easy to determine the needed compensating transformation?

No, but thankfully group theory comes to our rescue:

Iwasawa Theorem: Every element g in a group G, that can be obtained by ex-

ponentiating the lie algebra G, can be expressed as

g = gKgHgN ,

where gK is in the maximal compact subgroup K of G, gH is in the maximal torus of

G and gN is in the exponentiation of the positive-root part of the algebra g of G.

Our coset representative is constructed by exponentiating the Cartan subalgebra

and the full set of positive-root generators, ie V = gHgN . If we act on the right of

V by Λ, we obtain a new element of the group VΛ. Invoking the above theorem,

VΛ = gKg
′
Hg
′
N = gKV ′. This assures us that we will always be able to find an

element gKεK such that gKV ′ = VΛ. Thus, the coset manifold is of the form G/K,

where K is the maximal compact subgroup of G.

The next question that arises is how to identify the group G in each dimension.

The answer is easy: we just identify the dilaton vectors that correspond to simple

roots of the lie algebra and then we look up to find to which algebra they correspond.
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G K dim(G/K)

D=10 O(1,1) - -

D=9 GL(2,R) O(2) 3

D=8 SL(3,R)× SL(2,R) SO(3)×SO(2) 7

D=7 SL(5,R) SO(5) 14

D=6 O(5,5) O(5)×O(5) 25

D=5 E6(+6) USp(8) 42

D=4 E7(+7) SU(8) 70

D=3 E8(+8) SO(16) 128

Table 2.2: Cosets for maximal supergravity in Minkowskian signature

The scalar coset manifolds coming from toroidal dimensional reduction of the

eleven-dimensional supergravity are summarized in the table 2.2. Just by observation

of that table, we note that the D=6 case begins to indicate a new phenomenon: it

appears to have a mismatch of fields -see Appendix.

• When compactifying on T 5, we obtain 10 1-forms from the reduction of the

3-from and 5 KK gauge fields from the reduction of the metric. So, in total,

we have 15 1-forms that should be transforming in a linear representation of

the group O(5, 5). The problem is that O(5,5) does not have a 15-dimensional

representation. But, in 6 dimension, the 3-form is dual to a vector field. This

adds one more 1-form to give in total 16. The O(5,5) group has a 16-dimensional

representation: the spinor representation.

• Also, upon compactification on T n with n=(2,3,4,5,6,7,8), we obtain (1,4,10,20,

35,56,84) axions in total. On the other hand, the number of positive roots of

the groups G are (1,4,10,20,36,63,120) respectively. Thus, we conclude that the

numbers of axions do not much for D < 6 or in other words, the dimensions

of the coset manifolds do not match the total number of scalars obtained by

reducing. The solution to this problem is again dualization. For the case D=5,

we have 6 dilatons, 35 axions and one 3-form that dualises to an axion. In total,
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42 scalars(36 axions) as we wanted. For the case D=4, we have 7 dilatons, 56

axions and 7 2-form that dualises to axions: 70 scalars(63axions) in total, as

we wanted. For the case D=3, we have 8 dilatons, 84 axions and 36 1-form that

dualises to axions: 128 scalars(120 axions) in total, as we wanted.

Note that in order to obtain the precise form of the group G is needed to take

into consideration the Chern-Simons term as well as it provides additional couplings

between scalars and form fields.

In order to be more explicit, we shall explore the D=5 case in detail. We will only

consider the scalar sector, since it governs the global symmetry of the entire theory,

and the 3-form potential term. First of all, we need to show how dualisation of A[3]

works. The terms in the lagrangian that involve the latter are the following

L(F[4]) =
1

2
e
−→a ·
−→
φ ? F[4] ∧ F[4] −

1

72
Aijk[0]dAlmn[0] ∧ F[4]ε

ijklmn, (2.55)

where F[4] = dA[3]. In the dualisation process, the Bianchi identity dF[4] and the

field strength equation of motion interchange roles. To achieve this, we treat F[4] as

the fundamental field and we impose the Bianchi identity by adding a term −χdF[4]

containing a Lagrange multiplier χ. Thus, equation (2.55) becomes

L′(F[4]) = −1

2
e
−→a ·
−→
φ ? F[4] ∧ F[4] −

1

72
Aijk[0]dAlmn[0] ∧ F[4]ε

ijklmn − χdF[4]. (2.56)

Obviously, the equation of motion with respect to the fields χ is the Bianchi identity,

while the equation of motion with respect to F[4] is a purely algebraic equation

e
−→a ·
−→
φ ? F[4] = dχ− 1

72
Aijk[0]dAlmn[0]ε

ijklmn. (2.57)

We now introduce a new quantity G[1] ≡ e
−→a ·
−→
φ ? F[4]. If we solve the latter for F[4],

we get F[4] = e−
−→a ·
−→
φ ? G[1]. In terms of G[1], the lagrangian (2.56) becomes

L′(F[4]) = −1

2
e−
−→a ·
−→
φ ? G[1] ∧G[1]. (2.58)

What we have just done is to replace the 4-form field strength with a 1-form G[1], or

in other words, we have replaced the 3-form gauge field A[3] with an axion χ. Note

the change of the sign of the dilaton vector −→a .
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Now that we have found one more axion, we need one more positive-root generator,

denoted by J, that will correspond to the−−→a dilaton vector (in addition to the Cartan

generators
−→
h and positive-root generators E j

i and Eijk) and will satisfy the following

commutation relations

[~h, J ] = −~aJ, [E j
i , J ] = 0, [Eijk, J ] = 0, [Eijk, Elmn] = −εijklmnJ.

(2.59)

The coset representative will be

V = e
1
2
−→a ·
−→
H
∏
i<j

eA
i
j[0]

E j
i

∏
i<j<k

eAijk[0]E
ijk

eχJ . (2.60)

As the maximal compact subgroup of E6(+6) is USp(8), which is no longer orthogonal,

the definition of M will be slightly different than before

M = τ(V−1)V , (2.61)

where τ is the Cartan involution operator. The action of this operator is to reverse the

sign of every non-compact generator, while leaving the sign of the compact generators

unchanged. At this point, it would be wise to mention that in the process of toroidal

compactification of the eleven-dimensional supergravity we are always dealing with

maximally non-compact groups. This means that all the Cartan generators are non-

compact, while the rest are equally split into compact and non-compact. This is the

reason for the existence of the extra subscript (6) on E6: it denotes the existence of

6 more non-compact Cartan generators.

Now, we can express the scalar lagrangian in terms of M

L =
1

4
tr(∂M−1∂M), (2.62)

which is manifestly invariant under the action of global E6. The coset manifold in

this case is E6

USp(8)
.

Compactification on T 7 and T 8 proceeds in a very similar manner.
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2.4 Duality group evolution: tri-graded structure

In this section, we will attempt to find a link between the duality groups summarized

in table (2.2). This problem was also addressed by K.S.Stelle in [7]. In order to inves-

tigate this possibility, let us consider the compactification of the eleven-dimensional

supergravity on T 4 and then compactify again on S1.

Upon reduction from D=11 down to D=7, we obtain 14 scalars that parameterize

the scalar cosetSL(5,R)
SO(5)

: 4 dilaton, 6 Aij[0] and 4 Aijk[0] ; 10 1-forms that lie in the represen-

tation 10 of SL(5,R): 4 Ai[1] and 6 Ai[1]; and 5 2-forms that lie in the 5 representation

of SL(5,R): 4 Ai[2] and another 2-form obtained from dualisation of the 3-form -see

Appendix. If we now reduce again on S1, we obtain 1 more dilaton coming from the

reduction of the metric and 10 more axions coming from the reduction of the 1-forms.

As stated at the end of the previous section, the duality group evolves from SL(5, R)

in 7 dimensions to SO(5, 5) in 6 dimensions.

The D=6 algebra can be presented in a tri-graded structure, with the grading

generator gl1 corresponding to the new dilaton. This gl1 operator along with the sl5

generators form the zero weight of the D=6 algebra. We also have 10 non-zero weight

generators corresponding to the 10 new axions. Thus, the D=6 algebra S0(5,5) may

be presented as

10
(−n) ⊕ (gl1 ⊕ sl5)(0) ⊕ 10(n), (2.63)

where R(n) denotes the R representation of sl5 with (n) gl1 grading weights. The

reason why the gl1 ⊕ sl5 subalgebra has a zero weight is because the metric, from

which the gl1 dilaton emerges, is invariant under the transformations generated by

the sl5 algebra and thus gl1 and sl5 commute among themselves (recall the definition

of R-symmetry). To determine n, we have to consider how the SO(5,5) algebra acts

on 2-forms and 1-forms. In 6 dimensions, we have:

• 5 self-dual 2-forms emerging directly from the 5 2-forms in 7 dimension. Thus,

they will lie in 5q and 5
(−q)

representations, with only one of the two being

independent. Let this be 5
(−q)

(q is to be determined).

29



• 1 KK vector field arising from the reduction of the metric, 10 1-forms emerging

directly from the 10 1-forms in 7 dimension and another 5 coming from the 5

2-forms in 7 dimensions. Thus, they will lie in the 1(−p) ⊕ (10)(n−p) ⊕ 5
(−q+p)

representation, with p to be determined. In order to make the assignments, we

take into account the relation between the 10(n) axions and the 10(n−p) 1-forms:

the axions have one extra internal index pointing in the 7th direction and this

index corresponds to adding gl1 weight p. The same argument holds for the

5
(−q+p)

1-forms and the 5
(−q)

2-forms. Finally, the 10(n) axions must rotate 1(−p)

into 10(n−p).

To determine the exact values of the grading assignments, we just require the 2-forms

and 1-forms to fall in representations of the D=6 algebra.

• From basic group theory [5], we know that the product of the 1-form represen-

tations (10)(n−p) × 10(n) must give a 5
(−q+p)

. Thus, 2(n-p)=-q.

• Also, the product of the 2-form representation (10)(n) × 5
(−q)

must give a 5q.

Thus, n=2q and p=5q/2. If we choose q to be q=2, then n=4 and p=5.

Consequently, the D=6 algebra S0(5,5) may be presented as

10
(−4) ⊕ (gl1 ⊕ sl5)(0) ⊕ 10(4). (2.64)

The 1-forms form the representation 16c of S0(5,5): 1(−5) ⊕ (10)(−1) ⊕ 5
(3)

and the

2-forms form the 10 of S0(5,5): 5
(−2) ⊕ 5(2). The 25 scalars parameterize the coset

manifold SO(5,5)
SO(5)×SO(5)

and can be arranged in terms of the 16c using the parabolic

gauge. One S0(5) may be used to gauge away 10 out of the 24 sl5 generators. We

have 14 generators left, corresponding to the 14 scalars in D=7 (remember that in

D=7 the coset manifold is SL(5,R)
So(5)

). Another S0(5) may be used to gauge away the

negatively graded 10
(−4)

generators. We still have the positively graded generators

10(4), corresponding to the 10 new axions that emerge, and the gl1 generator, corre-

sponding to the new dilaton that appears.
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In terms of Dynkin diagrams, the duality group evolution just described can be

presented as

t t t t
SL(5)

-

tt t t t
D5
∼= SO(5, 5)

Now, compactify one more dimension: we obtain 1 more dilaton and 16 more ax-

ions. From the table in section (2.3), we expect the duality group to evolve from

SO(5,5) to E6,(6). The D=5 algebra, as before, can be presented in a tri-graded struc-

ture; the grading generator corresponds to the new dilaton just like before. This gl1

operator along with the so(5, 5) generators form the weight zero sector of the D=5

algebra. We also have 16 non-zero weight generators corresponding to the 16 new

axions. Thus, the D=5 algebra e6,(6) may be presented as

16(−3)
a ⊕ (gl1 ⊕ s0(5, 5)(0) ⊕ 16(3)

c (2.65)

The 1-forms lie in the representation 27 of e6,(6): 1(−4)⊕ (16)(−1)⊕ 10(2), as we have 1

KK vector field arising from the reduction of the metric, 16 1-forms emerging directly

from the 16 1-forms in 6 dimension and another 10 coming from the reduction and

dualisation of the 2-forms. Note that the exact grading assignments are determined

by the requirement that the 1-forms form a representation of the D=5 algebra. The

42 scalars parameterizing the coset manifold
E6(+6)

USp(8)
can be arranged in terms of the

27 using the parabolic gauge. The generators of USp(8) divided into those lying in

the SO(5)× SO(5), which are used to gauge away 20 generators of the so(5, 5), and

those lying outside of it, which are used to gauge away the negatively graded 16(−3)

generators. Thus, we are left with the 25 scalars parameterizing the coset manifold

SO(5,5)
SO(5)×SO(5)

, with the dilaton corresponding to gl1 and the 16 axions corresponding to

16
(3)
c .

The relevant Dynkin diagrams are the following.tt t t t
S0(5, 5)

-

tt t t t t
E(6)
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If you do another compactification on S1 (in order to descend down to 4 dimen-

sions) and use similar arguments to those stated above, we find that the duality

algebra structure is the following

27
(−2) ⊕ (gl1 ⊕ e6(+6))

(0) ⊕ 27(2) (2.66)

The self-dual 1-forms lie in the representation 56 of the algebra of E6(+6): 1(−3) ⊕

(27)(−1)⊕27
(1)⊕1(−3). This evolution can be represented in terms of Dynkin diagrams

as follows. tt t t t t
E(6)

-

tt t t t t t
E(7)

If we put together all the Dynkin diagrams that correspond to the duality groups of

D=7,6,5,4, we get a really enlightening picture.

t t t t
SL(5)

-

tt t t t
SO(5, 5)

-

tt t t t t
E6

-

tt t t t t t
E7

Finally, note that the duality group in 3 dimensions is E8(8) and the relevant Dynkin

diagram is the following. tt t t t t t t
E8
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Chapter 3

Stationary Solutions

In this chapter, we will discuss stationary solutions of supergravity theories [4, 7, 8, 9].

In order to do that, we will need to introduce dimensional reduction along the time

direction. For simplicity, we will restrict ourselves on studying spherically symmetric

solutions and we will mainly focus on four-dimensional theories.

3.1 Timelike Reduction and the relevant duality

groups

In this section, we will explore compactification along the time direction. This kind

of reduction is really similar to the one described in the previous chapter and thus

we will be brief; we will basically follow [7]. Firstly, we need to set the ansatz for the

metric and the 1-form gauge field.

• Upon timelike reduction of a (D+1)-dimensional, Minkowskian metric, we ob-

tain a D-dimensional Euclidean metric γij, a KK scalar φ and a KK vector field

Ai. Remember that all the lower-dimensional fields are required to be inde-

pendent of the compactified coordinate; in our case, the fields need to be time

independent. The ansatz is the following

dŝ2 = −H2a(dt+ Bidxi)(dt+Ajdxj) +H2βγijdx
idxj, (3.1)
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where a2 = [2(D − 1)(D − 2)]−1 and b = −(D − 2)a, just like before, and H is

a general harmonic function, i=1..D.

• Upon reduction of a (D+1)-dimensional gauge field Âµ, a D-dimensional gauge

field Ai and an axion U emerge. The reduction ansatz is the following

Âµ̂dx
µ̂ = U(dt+Aidxi) + Aidx

i, (3.2)

where Ai is the KK gauge field coming from the reduction of the metric and

µ̂=1..(D+1). Both, Ai and U, are considered to be time independent.

Having set the above, we can now compactify the Einstein-Hilbert lagrangian,

given by (2.1). The reduced lagrangian is the following

L =
√
γ(R(γ)− 1

2
∂iφ∂

iφ+
1

4
ebφFijF ij), (3.3)

where F = dA. We can also compactify the standard, kinetic term of the gauge field

L = −1
4
F̂µ̂ν̂F̂

µ̂ν̂ , where F̂µ̂ν̂ = ∂µÂν − ∂νÂµ as usual. If we assume flat space, then

L = −1

4
F̂µ̂ν̂F̂

µν = −1

2

(
F̂0iF̂

0i + F̂ijF̂
ij
)

=
1

2
∂iU∂iU −

1

4
FijFij. (3.4)

Note that the last term of (3.3) and the first term of (3.4) come with a wrong sign; the

extra minus sign arises from the single η00 used to contract the indices. Systematic

analysis of the terms coming with the wrong sign, yielded the following general rule:

if the rank of a tensor field is reduced upon timelike dimensional reduction by an odd

number, then the kinetic term of that field comes with the wrong sign. For example,

the gauge field emerging from the reduction of the metric (2 → 1) and the scalar

coming from the reduction of the gauge field (1 → 0) will have kinetic terms with a

plus sign instead of the usual minus.

As we have seen, essentially things proceed just like before, for spacelike dimen-

sional reduction, with the difference being some extra minus signs. In table 3.1, we

can see the duality groups of the theories emerging after spacelike and timelike re-

duction; we note that the group G is left unchanged, while the divisor group K is

exchanged for a non-compact from K∗ of K. Because of this fact, the metric on the

scalar manifold G/K∗ is now indefinite.
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G K K∗

D=10 O(1,1) - -

D=9 GL(2,R) O(2) O(1,1)

D=8 SL(3,R)× SL(2,R) SO(3)×SO(2) S0(2,1)× SO(1,1)

D=7 SL(5,R) SO(5) SO(3,2)

D=6 O(5,5) O(5)×O(5) SO(5,C)

D=5 E6(+6) USp(8) USp(4,4)

D=4 E7(+7) SU(8) SU*(8)

Table 3.1: Supergravity sigma-model symmetries for spacelike and timelike dimen-

sional reduction

3.2 Single-center and Multi-center, spherically sym-

metric solutions

In what follows we will be particularly interested in the sector of the D-dimensional

reduced lagrangian (on the time direction) that contains the gravity term and the

non-linear sigma model term, ie

Lσ =
√
γ
(
R(γ)− 1

2
GAB(φ)∂iφ

A∂jφ
Bγij

)
, (3.5)

where the scalar fields φA parameterize the scalar manifold G/K∗, GAB is the indef-

inite metric on the scalar manifold and γij is the D-dimensional Euclidean metric.

The field equations arising from the above lagrangian are the following

1
√
γ
∇i

(√
γγijGAB(φ)∂jφ

B
)

= 0,

Rij(γ) =
1

2
GAB(φ)∂iφ

A∂jφ
B, (3.6)

where ∇i is a doubly covariant derivative; its action on coset space vectors gives

∇iVA = ∂iVA − ΓDAE(G)∂iφ
E, where ΓDAE(G) is the usual Cristoffel connection for the

metric of the scalar manifold GAB. The above equations were rewritten by Clement
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using a matrix representation M(xM) of points on the coset manifold G/K∗[8]

∇i

(
M−1∇iM

)
= 0,

Rij = −1

4
Tr(∇iM∇jM

−1), (3.7)

where M is such that the line element on the target space can be written as ds2 =

GABdφ
AdφB = −1

4
Tr(dMdM−1).

Now, we make two simplifying assumptions:

• φA depends on xi only through an intermediate scalar function σ(x), ie φA(x) =

φA(σ(x)).

• σ(x) is a function of r =
√
xixi, ie we are looking for a spherically symmetric

solution.

The equations of motion, given by (3.6), become

∇2σ
dφA

dσ
+ γij∂iσ∂jσ

[d2φA

dσ2
+ ΓABC(G)

dφB

dσ

dφC

dσ

]
= 0, (3.8)

Rij =
1

2
GAB(φ)

dφA

dσ

dφB

dσ
∂iσ∂jσ. (3.9)

Using the Bianchi identity, ∇i(Rij − 1
2
γijR) = 0, the latter equation can be rewritten

as

1

4

d

dσ

(
GAB(φ)

dφA

dσ

dφB

dσ

)
(∇iσ∂iσ∂jσ) = 0. (3.10)

If we require the properties of σ(xi) and d
dσ

to be separated, the above equations yield

the following ones

∇2σ = 0 ⇒ σ = h+
q

rD−2

d2φA

dσ2
+ ΓABC(G)

dφB

dσ

dφC

dσ
= 0, (3.11)

along with the gravitational constraint

d

dσ

(
GAB(φ)

dφA

dσ

dφB

dσ

)
= 0 ⇒ GAB(φ)

dφA

dσ

dφB

dσ
= 2v2 = const, (3.12)
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where h, q and v are constants and D denotes the space dimensions. Equation (3.11)

tells us that σ(x) is a harmonic function that acts as a map from the D-dimensional

Euclidean space to the target space and φA(σ) is a geodesic on the coset manifold

with respect to the affine parameter σ(x). Note that GAB is indefinite and thus, three

types of geodesics may exist: spacelike if v2 > 0, timelike if v2 < 0 and null if v2 = 0.

Writing the geodesic equation (3.11) and the gravitational constraint (3.12) in

matrix terms, we get

d

dσ

(
M−1dM

dσ

)
= 0, ⇒ M = AeBσ,

Rij =
1

4
Tr(B2)∇iσ∇iσ, (3.13)

where AεG/H∗ and Bεg are constant matrices such that MεG/H∗; A and B are

related to the asymptotic values of the scalar fields. We observe that in the particular

case that Tr(B2) = 0, the Euclidean space is flat and the geodesics of the target space

are null ds2 = GABdφ
AdφB = −1

4
Tr(dMdM−1) = 0. Non-trivial, null geodesics exist

only for non-compact manifolds and are really important as they lead to a class

of solutions that contains the supersymmetric BPS black holes. The flatness of the

three-dimensional space supports the anticipation that the attractive/repulsive forces

associated with different charges are mutually balanced.

Figure 3.1: Harmonic map from ED to a null Geodesic to G/K∗

The above discussion was generalized by Clement for solutions involving multiple

harmonic maps σa(x) (multi-charge solutions)[8]. If the field equations can be reduced

to a set of decoupled harmonic equations without assuming spherical symmetry

∇2σa = 0 ⇒ σa = ha +
qa

|~x− ~xa|D−2
, (3.14)

37



then, the matrix

M = Aexp
(∑

a

Baσa

)
(3.15)

solves the field equations ∇i(M−1∇iM) = 0 provided that the commutator [Ba, Bb]

commutes with Bc, ie [[Ba, Bb], Bc] = 0. In other words, the geodesics φA(σ) of

the single-center case are replaced by a totally geodesic submanifold of G/K∗ (a

submanifold is called totally geodesic if every geodesic in it is also a geodesic of the

whole manifold).

The condition [[Ba, Bb], Bc] = 0 allows one to write

M = Aexp
(
− 1

2

∑
c>b

∑
b

[Bb, Bc]σbσc

)∏
a

eBaσa . (3.16)

The matrix current is

M−1∇iM =
∑
a

Ba∇iσa −
1

2
[Bb, Bc](σb∇iσc − σc∇iσb) (3.17)

and is conserved provided that σa are harmonic functions. The gravitational con-

straint can also be translated into this language

Rij =
1

4

∑
a,b

tr(BaBb)∇iσa∇jσb. (3.18)

If the D-dimensional space is Ricci flat, then tr(BaBb) = 0 and the geodesics gener-

ated by any affine parameter σa(x) are all null.

3.3 Stationary life in four dimensions: reduction

to E3 and duality enhancement

Now, we are going to specialize the above discussion for four-dimensional Minkowsky

spacetime reduced to three-dimensional Euclidean space. This case was examined by

Breitenlohner, Maison and Gibbons in [9].
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The reduced Einstein-Hilbert lagrangian is given by equation (3.3)

L =
√
−gR̂(ĝ) =

√
γ(R(γ)− 1

2
∂iφ∂

iφ+
1

4
e−2φFijF ij),

where we have set b=-2. Note that in three dimensions, the 1-forms are dual to

scalars and thus the above system can be interpreted as a 2-scalar fields system. In

order to dualise the 1-form, we have to use a Lagrange multiplier χ and treat Fij

as the fundamental quantity. Therefore, we add to the above lagrangian the term

√
γχεijk∂iFjk, which if intergraded by parts gives −√γ∂iχεijkFjk. The equation of

motion with respect to the field Fjk is now Fjk = e2φ∂iχε
ijk. Eliminating Fjk from

the equation (3.3), we obtain

L =
√
γ
(
R(γ)− 1

2
∂iφ∂

iφ− 1

2
e2φ∂iχ∂

iχ
)
. (3.19)

Note the sign-change of the last term of (3.19): the bad + sign flipped back to the

normal -. This is due to the extra minus sign that always emerges upon dualisation.

For instance, if we were examining the kinetic term of a 1-form field in D=3 dimen-

sions, upon dualisation of the field into a scalar, the sign of the kinetic term would

flip from the usual minus to the ”bad” plus. Observe also the changed of the dilaton

coupling e−2φ → e2φ.

The theory given by (3.19) was studied in section (2.1) in detail. The conclusion

that we reached was that the two scalars parameterize an SL(2,R)
SO(2)

coset manifold with

an SL(2,R) global symmetry. This is the so-called Ehlers group and it can be written

as SL(2, R) = 1(−2) ⊕ 1(0) ⊕ 1(2), where the zero-graded generator corresponds to the

Cartan generator. In other words, the stationary solutions of pure gravity theories in

4 dimensions yield a formulation of the theory as an SL(2,R) non-linear sigma model

coupled to three-dimensional gravity.

This property generalizes for the case of theories of gravity coupled to matter

which are already G4 symmetric in 4 dimensions [7, 9]. Consider a four-dimensional

theory that already has a G4 symmetry and contains 1-forms in the l4 representa-

tion of G4. Now, reduce this theory to the three-dimensional Euclidean space E3.

The scalars emerging from the reduction of the four-dimensional 1-forms admit a
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(constant) shifting symmetry, as a result of the global gauge transformations in 4

dimensions. The scalars obtained by dualising the three-dimensional 1-form fields

also admit a shifting symmetry as dualisation leaves undetermined constants. All

together, these shifting symmetries transform in the l4 representation of G4. The

commutators of the Ehlers group generators with the generator of the shifting sym-

metries generate other generators also in l4. Thus, the G4 symmetry is enhanced to

a symmetry G with the following penta-graded structure:

g ∼= sl(2, R)⊕ g4 ⊕ (2l4) ∼= 1(−2) ⊕ l(−1)
4 ⊕ (1 + g4)(0) ⊕ l(1)

4 ⊕ 1(2),

where the grading generator corresponds to the Cartan subalgebra generator of the

Ehlers group, as before. The resulting three-dimensional theory is described by the

coset representative VεG/K∗ and a three-dimensional metric. Note that according to

our previous discussion on dualisation, the induced metric is positive definite for the

Ehlers and G4 	K4 sectors, but negative definite for the l4 Einstein-Maxwell sector

(as the scalars emerging from the four-dimensional Maxwell fields come with the

wrong sign either because of the nature of the timelike reduction, or because of the

dualization process). Some examples of the symmetry enhancement just described

are summarized in table 3.2.

The Einstein-Maxwell example:

The Einstein-Maxwell lagrangian in 4 dimensions is the following.

L =
√
ĝ(R̂− 1

2
F̂ 2), (3.20)

where F̂ is the 2-form field strength of the gauge field Â. Using the ansatzs described

previously, we dimensionally reduce this theory along the time direction.

L =
√
γ
(
R(γ)− 1

2
∂iφ∂

iφ− 1

2
e−2φ∂iχ∂

iχ+
1

2
e−

1
2
φγij∂iU∂jU −

1

4
e−

1
2
φFijF

ij
)

(3.21)

Let the Euclidean, three-dimensional metric γij be spherically symmetric(not flat):

ds2 = γijdx
idxj = dr2 + f(r)2(dθ2 + sin2θdϕ2). (3.22)
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Minkowsky theory G4

K4

G3

K3
spatial re-

duction

G3

K3
timelike re-

duction

n+4 dimensional Einstein

gravity reduced to D=4

GL(n)
SO(n)

SL(n+2)
SO(n+2)

SL(n+2)
SO(n,2)

Einstein-Maxwell N=2 su-

pergravity

no scalars in

D=4

SU(2,1)

S
(
U(2)×U(1)

) SU(2,1)

S
(
U(1,1)×U(1)

)
N=4 supergravity SO(6)×SO(2,1)

SO(6)×SO(2)
SO(8,2)

SO(8)×SO(2)
SO(8,2)

SO(6,2)×SO(2)

N=4 supergravity and 6

N=4 super Maxwell

SO(6,6)×SO(2,1)
SO(6)×SO(6)×SO(2)

SO(8,8)
SO(8)×SO(8)

SO(6,6)×SO(2,1)
SO(6)×SO(6)×SO(2)

N=8 supergravity
E7(+7)

SU(8)

E8(+8)

SO(16)

E8(+8)

SO∗(16)

Table 3.2: Symmetry enhancement of 4-dimensional theories with original G4

K4
sym-

metry.

The equations of motion of the reduced theory are as follows

f−2 d

dr
(f 2dφ

A

dr
) + ΓABC(φ)

dφB

dr

dφC

dr
= 0, (3.23)

Rrr = −2f−1d
2f

dr2
= GAB(φ)

dφA

dr

dφB

dr
,

Rθθ = Rϕϕ = f−2(
df

dr
· df
dr
− 1) = 0. (3.24)

The latter equation yields f 2(r) = (r − r0)2 + c2. Thus, if we introduce the new,

harmonic function σ = −
∞∫
r

f−2(s)ds and assume that φ(r) = φ(σ(r)), equation (3.23)

becomes

d2φA

dσ2
+ ΓABC(φ)

dφB

dσ

dφC

dσ
= 0. (3.25)

This equation tells us that φA(σ(r)) is a geodesic and σ(r) is an affine parameter.

As discussed in the previous section, the scalar coset in this case is given by G
K∗

=

SU(2,1)

S
(
U(1,1)×U(1)

) and corresponds to signature diag(++- -). If we restrict ourselves to
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static solutions, then the coset manifold becomes G
K∗

∣∣∣
static

= SO(2,1)
SO(1,1)

and corresponds

to signature diag(+ -); we can do this because a magnetic field can be eliminated by a

duality transformation. The metric GAB in this restricted target space, which in fact

is the two-dimensional De Sitter space, is the following (A,B = 1, 2, φ1 = ϕ, φ2 = χ)

ds2 =
dφ2

2φ2
− 2dχ2

φ
. (3.26)

The geodesic equations on this space are

ϕ̈− ϕ−1ϕ̇2 − 2χ̇2 = 0, χ̈− ϕ−1ϕ̇χ̇ = 0, (3.27)

where the dot denotes differentiation with respect to σ. Solving the above equations

with boundary conditions (ϕ, χ) = (1, 0) at σ = 0↔ r →∞, we obtain

ϕ(σ) =
sinh2β

sinh2(β − vσ)
,

χ(σ) =
sinh(vσ)

sinh(β − vσ)
, (3.28)

where v2 = 1
2
GAB

dφA

dσ
dφB

dσ
.

Figure 3.2: Carter-Penrose diagram for the two-dimensional de Sitter space. The

curves a,b,c are examples of timelike, null and spacelike geodesics corresponding to

the solution found; ∆ ≡ ϕ,A ≡ χ
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The above solution can be characterized according to the value of v to which it

corresponds.

a. if v2 > 0, the solution is the non-extremal Reissner-Nordström black hole and goes

from (ϕ, χ) = (1, 0) to the horizon where ϕ = 0.

b. if v2 = 0, the solution is the extremal Reissner-Nordström black hole and goes

from (ϕ, χ) = (1, 0) to a degenerate horizon where ϕ = 0.

c. if v2 < 0, the solution is the hyper-extremal Reissner-Nordström black hole. For

a finite value of the affine parameter σ, it goes from (ϕ, χ) = (1, 0) to a naked

singularity where ϕ = ∞. Note that these geodesics are obtained by analytic

continuation of the v2 > 0 case.

The above solution has mass m = v coth β and charge q = v
sinhβ

. Obviously, the

mass m and the charge q satisfy the equation m2 − q2 = v2.
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Chapter 4

Masses, Charges and

Supersymmetry

In the following chapter, we will explore the basic properties of asymptotically flat,

stationary solutions of four-dimensional theories. We will restrict our discussion to

theories that already have a G4 symmetry in 4 dimensions and contain 1-forms in the

l4 representation of G4. G4 will be assumed to be a semi-simple Lie group. Further

details on the subject can be found in [7, 10, 11].

Note that although in the previous chapters we have discussed in detail spacelike

and timelike dimensional reduction using the concept of an ansatz, in what follows it

will be easier to use the concept of killing vectors: exact solutions of theories of gravity

coupled to matter are generally known only when the corresponding metric admits

a certain number of killing vectors, and furthermore these isometries leave invariant

the various matter fields of the theory. But the existence of k such killing vectors is

equivalent to the solution being independent of the k corresponding coordinates in

such a way that the solution can be interpreted in D-k dimensions. If all the killing

vectors are spacelike, then the fields of the dimensionally reduced theory are defined

on a (D-k)-dimensional spacetime and the Hamiltonian of the theory is positively

definite. In contrast, if one of the killing vectors is timelike, the fields of the reduced

theory are defined in an Euclidean-signature space and the action of the dimensionally

reduced theory is indefinite (of course, this is not a problem as we are only interested
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in the classical equations of motion in an Euclidean-signature reduced theory that

has no problem of instabilities -we have assumed a stationary spacetime).

For instance, when compactifying on S1, the imposition of the Kaluza-Klein metric

ansatz is the same as demanding the metric field to admit one killing vector k̂µ̂

Lk̂ĝ
µ̂ν̂ = 0, (4.1)

and that all other fields have vanishing Lie derivatives with respects to that killing

vector. If we take k̂µ̂ = δµz , the above requirement is exactly equivalent to demanding

z-independence, as discussed in chapter 2.

4.1 Masses and Charges

In the special case of timelike reduction from four-dimensional Minkowsky spacetime

to three-dimensional Euclidean space, the Komar 2-form is defined as K = ∂µkνdx
µ∧

dxν for a timelike killing vector k and is invariant under the action of the timelike

isometry. Assuming that the scalar dual to the KK vector field falls off at infinity as

O(1/r), the asymptotic fall off is slow enough to generate non-vanishing Komar mass

and NUT charge as a result of the Gauss flux law

m =
1

8π

∫
∂Σ3

S∗ ? K, n =
1

8π

∫
∂Σ3

S∗K, (4.2)

where S∗ is the pullback to a section of the spatial boundary of Σ3 and ?K is the

hodge dual of K in 4 dimensions.

The field strength equations of motion can be brought to the form d ? F̃ = 0,

while the Bianchi identity is dF̃ = 0, where F̃ = ∂L
∂F̃

is in fact a linear combination

of the four-dimensional field strengths. These equations permit one to define electric

and magnetic charges as follows

q =
1

2π

∫
∂Σ3

S∗ ? F̃ , p =
1

2π

∫
∂Σ3

S∗F̃ . (4.3)
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These quantities transform together in the representation l4 of G4.

Now, we want to study the above charges from the three-dimensional point of view.

According to our previous discussion, the reduced theory can be described in terms of

the coset representative VεG/K∗. The Maurer-Cartan form V−1dV , which is valued

in the Lie algebra g of the duality group G, can be decomposed as V−1dV = Q+ P ,

where Q = Qidx
i in k∗ and P = Pidx

i in g 	 k∗. In terms of these quantities, the

Bianchi identity can be written as

dQ+Q2 = −P 2 (4.4)

and the three-dimensional scalar field equations can be written as

d ? P + {Q, ?P} = 0, (4.5)

where ? is now the Hodge star in 3 dimensions. Note that equation (4.5) can also be

written as follows

d ? VPV−1 = 0. (4.6)

Thus, one can consider ?J = ?VPV−1 as the 2-form dual of the conserved current J

associated with the G-invariance of the three-dimensional theory (J is valued in the

lie algebra g). But since the three-dimensional theory is Euclidean (ie there is no

time coordinate), we can not speak of a conserved charge. Nevertheless, ?VPV−1 is

d-closed and thus the integral of this 2-form on a given cycle is independent of the

choice of cycle representative, ie one can talk of independence of the section s chosen

as ∂Σ3 in (4.2). Thus, subject to appropriate asymptotic conditions, m,n, qI and

pI are conserved in this sense. The d-closure of ?J allows one to define a conserved

charge matrix

C =
1

4π

∫
∂Σ2

?VPV−1, (4.7)

which transforms in the adjoint representation of G. For asymptotically flat solutions,
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V can be normalized in such a way to tend asymptotically to the identity matrix.

Then, the charge matrix C can be read off the asymptotic value of P

P = C
dr

r2
+O(r−3) (4.8)

and is valued in g	 k∗. Recalling that g = sl(2, R)⊕ g4⊕ (2l4) and that k∗ is used to

gauge away the k4 components of g4, the negative-graded l4 and the so(2) components

of the Ehlers sl(2,R), one has

g 	 k∗ = (sl(2, R)	 so(2))⊕ l4 ⊕ (g4 	 k4). (4.9)

Thus, the computation of C permits one to define its sl(2, R)	o(2) component as the

Komar mass and the Komar NUT charge, and its l4 components as the electromag-

netic charges. The remaining g4 	 k4 scalar charges come from the Noether current

related to the original, G4-invariance of the four-dimensional theory. The associated

3-form J3 transforms in the adjoint representation of G4 and satisfies dJ3 = 0 on shell.

However, J3 can not be written as a local function of fields and their derivatives in

four dimensions. Nevertheless, for stationary solutions, ikJ3 can be written in terms

of the pull-backs of the fields of the three-dimensional theory. The integral of the

pull-back on any 2-cycle

1

4π

∫
σ

s ? ikJ3 (4.10)

is independent of the choice of the representative of that cycle. It is important to note

that the scalar charges are not independent. In supergravity theories, the imposition

of characteristic equations on C will lead to scalar charges being functions of the

electromagnetic charges and gravitational charges.

We can summarize what has been said above by the following equation

?VPV = 4s∗ ? Kh− 4s∗K(e+ f) + s∗ ? F + s∗F + s∗ikJ3 +O(r−2), (4.11)

where s∗ ? F + s∗F is the electromagnetic current, which transforms in the l4 repre-

sentation of G4 and is understood to be valued in the corresponding generators of G
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with the appropriate normalization; h,e and f are the usual generators of the SL(2, R)

group

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

The charge matrix C is associated with single-point solutions of the 3-dimensional

theory, called instantons, that correspond to particle-like solutions in 4 dimensions.

The independent parameters needed to describe these solutions are the conserved

charges in four dimensions: the mass, the NUT charge and the electromagnetic

charges (the g4 	 k4 scalar charges are not independent due to the characteristic

equation constraint). The electromagnetic charges and the non-compact generators

of K∗ transform in the l4 representation of G4. The action of these generators on the

electromagnetic charges is linear in the scalar and gravitational charges in such a way

that, if m2 +n2 6= 0, one can always find a generator that acts on the electromagnetic

charges just by shifting them. This generator forms the abelian S0(1,1) subgroup of

K∗ and, if TrC2 > 0, it permits one to cancel the electromagnetic charges. It was

also proven in [9] that static solutions without electromagnetic charges are regular

outside the horizon only if the scalar fields are constant throughout spacetime. Thus,

all static solutions with TrC2 > 0 that have no singularities outside the horizon lie

on the K∗-orbit of the Schwarzschild solution (the electromagnetic charges are equal

to zero for this solution).

4.2 Characteristic Equations

In Weyl canonical coordinates, the four-dimensional metric is given by

ds2 = f−1
(
e2k(dx2 + dρ2) + ρ2dϕ

)
+ f(dt+ Adϕ)2. (4.12)

For axisymmetric stationary solutions f, k and A are functions of x and ρ: f(x, ρ),

k(x, ρ) and A(x, ρ). Using these coordinates, according to [7, 10], the coset represen-

tative V for the Schwarzschild solution of mass m can be written as

VSchwarschild = exp(
1

2
ln
(ρ−m
ρ+m

h
)
, (4.13)
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where h is the non-compact generator of the Ehlers sl(2,R). From this, one obtains

directly that the charge matrix is C = mh. In the penta-graded decomposition of g,

the non-compact generator h in the adjoint representation is given by h=diag(2,1,0,-

1,-2), where 1 is the identity on l4 and 0 acts on g4 ⊕ {h}. It is trivial to show

that h satisfies the quintic equation h5 = 5h3 − 4h. For the duality group E8, the

fundamental and the adjoint representations coincide and thus the quintic equation is

also valid for the fundamental representation of h. Consequently, the charge matrix

for the Schwarzschild solution and for other solutions on a G-orbit passing through

Schwarzschild satisfy the so-called characteristic equation

C5 = 5c2C3 − 4c4C, (4.14)

where the square of the so-called BPS parameter c is c2 = 1
trh2 trC

2 (the normalization

chosen here is such that c2 = m2 for Schwarzschild). The characteristic equation

selects out of all G-orbits the acceptable ones and constrains the g4 	 k4 charges to

be functions of (m,n, qI , pI). Unacceptable orbits contains exclusively solutions with

naked singularities. Note that the same equation is obtained starting from the Kerr

solution.

The quintic characteristic equation holds in all cases, but for three-dimensional

systems with less than E8 symmetry. If we are dealing with a theory other than N=8

supergravity with real forms in E8(8) or N=2 supergravity with real forms in E8(−24),

a stronger cubic equation is obtained

C3 = c2C. (4.15)

This is true because in these cases, the fundamental representation of G admits a

tri-graded decomposition such that h=diag(1,0,-1) and thus h3 = h.

Note that owing to the indefinite metric on the coset manifold g	k∗, the trace trC2

(and thus c2) can assume either sign. However, the negative values of c2 correspond

to hyper-extremal solutions that will not be considered here. Hence, we will take the

BPS parameter to be non-negative.
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4.3 Extremal Solutions

In the case of non-rotating black holes, the BPS parameter c2 is the same as the

target space velocity v2 discussed in the previous chapter: c2 = v2 and is related

to the extremality of the solutions. Look at the Maxwell-Einstein theory as the

simplest example with indefinite sigma model metric, G
K∗

= SU(2,1)
S(U(1,1)×U(1))

. In this

case, the charge matrix is

CEinstein−Maxwell =


m n − z√

2

n −m i z√
2

z√
2

i z√
2

0

 , (4.16)

where z=q+ip is the complex electromagnetic charge. For this charge matrix, c2 =

1
trh2 trC

2 = m2 + n2 − zz. Thus, the solutions fall into three categories depending

on the value of c2: if c2 > 0, the solution is non-extremal; if c2 = 0, the solution is

extremal and finally, if c2 < 0, the solution is hyper-extremal. Note that the hyper-

extremal solutions have naked singularities, while the extremal and non-extremal

solutions have their singularities cloaked by horizons.

In general, we define theK∗-invariant, extremality parameter κ =
√
c2 − a2, where

a is the angular momentum in mass units. For asymptotically Taub-NUT black holes

κ = kA
4π

, where A is the horizon area and k is the surface gravity.

For extremal, non-rotating black holes c2 = 0. Thus, equation (4.14) yields C5 =

0, while (4.15) gives us C3 = 0. Consequently, the characteristic equations express

the degree of nilpotency of the charge matrix which is in turn related to the BPS

degree of the solution. Note that for rotating, extremal black holes c 6= 0.

4.4 Supersymmetric Solutions

Upon timelike dimensional reduction, the R-symmetry group U(N) of N-extended

four-dimensional supergravity theories is enhanced to the larger G = SO∗(2N) group

(non-compact for N > 1). The non-compact form of the maximal subgroup is K∗ =

Spin∗(2N) ×K0, where K0 is a symmetry group determined by the matter content
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of the four-dimensional theory. The group of automorphisms of the 2N-extended

superalgebra in 3 dimensions is the product of the three-dimensional rotation group

SU(2) and the R-symmetry group Spin∗(2N). The bosons and the fermions in 3

dimensions are related to spinor representations of Spin∗(2N) and transform into

each other by the action of the 2N-extended supersymmetry, with the supersymmetry

parameters belonging to the vector representation of the SO∗(2N) group. Note that

Spin ∗ (4) = SU(1, 1)× SU(2), Spin ∗ (6) = SU(1, 1) and Spin ∗ (8) = Spin(6, 2).

Now, let us construct the representations of the group Spin ∗ (2N) starting from

its Clifford algebra

{ΓI ,ΓJ} = 2δIJ , (4.17)

where I, J = 1, .., 2N . From these, we construct the raising and lowering operators

ai =
1

2
(Γ2i−1 + iΓ2i), ai = (ai)

† =
1

2
(Γ2i−1 − iΓ2i), (4.18)

that satisfy the following anticommutation relations

{ai, aj} = {ai, aj} = 0, {ai, aj} = δji . (4.19)

Then, we require that there exists a vacuum state |0 >, such that ai|0 >=0, and

we build all the other representations by acting on the vacuum state with creation

operators.

For N ≥ 5, there is no independent supermatter and thus, one can represent

Pµ(coming from the decomposition of the Maurer-Cartan form) in terms of a state

created by the ai:

|Pµ >= P (0)
µ + P

(2)
µija

iaj + P
(4)
µijkla

iajakal + ..)|0 > . (4.20)

For N < 5, one can have independent supermatter and thus the state carries an

extra label for the K0 representation |Pµ, A >. The charge matrix C can also be

represented as a state |C > transforming as a Spin∗(2N) chiral spinor

|C >= (ω + Zija
iaj + Σijkla

iajakal + ..)|0 >, (4.21)

where ω = m + in is the complex gravitational charge (mass and NUT charge),

Zij = Qij + iPij are the electromagnetic charges and Σijkl are the scalar charges. If
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we require the dilatino fields |χ >a to be left invariant under the residual, unbroken

supersymmetry δ|χ >a= 0, we find that

eµασ
a β
α (εiβai + Ωβγε

γ
i a

i)|Pµ >= 0. (4.22)

The charge matrix sector must satisfy the following equation, which is the so-called

Supersymmetric Dirac equation,

(εiaai + Ωaβε
β
i a

i)|C >= 0 (4.23)

where εia and εai are the asymptotic values of the killing spinor for the unbroken

supersymmetry as r → ∞ and Ωaβ =

 0 1

−1 0

 is an SU(2) invariant. Note that

for N < 5, the state |C > requires an extra label and thus, the relevant condition is

(εiaai + Ωaβε
β
i a

i)|C,A >= 0 . (4.24)

The importance of the last two equations is major as they contain all the information

about the supersymmetric solutions of N-extended supergravity theories needed for

a complete analysis.

In this language, the extremality condition is translated into a null condition:

c2 = 0⇔< C|C >= 0. (4.25)

If this equation is satisfied, then the first order equation that follows from the

vanishing of the supersymmetry variation of the gravitinos(and involves the killing

spinor)can be integrated. On the other hand, the supersymmetric Dirac equation is

equivalent to the requirement that |C > is a pure spinor of Spin∗(2N) and it has

the consequence that the characteristic equations can be solved in terms of rational

functions. Extremality, i.e. (4.25), coincides with the supersymmetry Dirac equation

for N ≤ 5 pure supergravities, but for the extremal, non-supersymmetric solutions

of N=6 and N=8 or of theories with independent vector supermultiplets, the Dirac

equation turns out to be a stronger condition.
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In order to be more precise, we calculate the extremality parameter for pure

supergravity theory with N ≤ 5 and we find that it factorized as expected

c2 =
|ω|2 − |z1|2)(|ω|2 − |z2|2)

|ω|2
. (4.26)

The extremality condition c2 = 0 gives either |ω|2 = |z1|2 or |ω|2 = |z2|2. Thus, some

degree of supersymmetry follows since a BPS bound is saturated. This factorization

does not occur with vector multiplet or N=6,8.

4.5 BPS Geology

As was explained by G.Bossard, H.Nicolai and K.S.Stelle in [10] and [11], the moduli

space M of spherically symmetric solutions may be decomposed into strata of various

BPS degrees.

M =
⋃
nεI

Mn (4.27)

These strata, denoted by Mn, are such that their intersections are empty and the

intersection of the closure of a stratum M̄n with another stratum Mm is either empty

or Mm itself.

Let M0 be the non-BPS stratum and Mn be n/N BPS. The main stratum M0

corresponds to a solution with c2 6= 0 and has the following structure

M0 = R∗+ ×
K∗

K4

, (4.28)

where K∗/K4 corresponds to the conserved four-dimensional charges of a given charge

matrix C and R∗+ corresponds to the non-zero value of the BPS parameter. The

stratum Mn of n/N BPS degrees can be given as the coset space

Mn = K∗/Jn, (4.29)

where Jn is the isotropy subgroup that leaves invariant a given charge matrix C.

The moduli space dimensions of some strata of pure supergravity theories, sum-

marized in [10], are given in table 4.1. In order to explain how these dimensions are

calculated, let us examine the N=8, non-extremal M0 case. The maximal subgroup
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N=2 N=3 N=4 N=5 N=6 N=8

dimM0 4 8 14 22 34 58

dimM1 3 7 13 21 33 57

dimM0
1 32 56

dimM2 8 16 26 49

dimM4 17 29

Table 4.1: Dimensions of strata in pure supergravities

N=2 N=3 N=4

M1 C2 = 0 C2 = 0 C3 = 0

M2 C2 = 0

Table 4.2: The nilpotency degree of C for N=2,3,4.

J0 of the non-compact Lie group E8(8) has 190 generators and thus the coset manifold

M0 = E8(8)/J0 is 248-190=58 dimensional (note that non-compact Lie groups may

have larger proper subgroups than compact Lie groups). One of those 58 parame-

ters that parameterize M0 is the BPS parameter c2. If we restrict ourselves to the

submanifold where c2 = 0, we get the 57-dimensional manifold M1.

As it turns out, the order of the stratum n is related to the nilpotency degree of

the charge matrix C in a G-invariant way. In the table 4.2, we can see the nilpotency

degree of C for N=2,3,4. For N=2,3, the condition C2 = 0 implies that the last non-

trivial stratum is M1. For N=4, C2 = 0 on M2 and thus the latter is the last non-

trivial stratum. For N ≥ 5, the nilpotency degree in the fundamental representation

is not enough to characterize the degree of the stratum and thus we also need to

consider the nilpotency degree of C in the adjoint representation .
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Chapter 5

A second approach to the subject:

the attractor formalism

So far we have only discussed the pure field-theoretic approach of black holes emerg-

ing from supergravity theories. According to this description, the extra dimensions

are compactified on some internal manifold X, as discussed in chapter 2, leading to

effective field theories in lower dimensions; in this case, our interest is specialized to

four dimensions. Locally, the original spacetime is a product of M4 ×X, where M4

denotes the four-dimensional spacetime. This means that at every point xµ of M4

there exists a corresponding, internal space X , whose size is such that it can not

be directly observable. However, the space X may be different at each point in M4:

moving through M4 one may encounter spaces X that are not necessarily equivalent

(but they belong to a well-defined class of fixed topology parameterized by certain

scalar fields). Hence, when dealing with a solution of a four-dimensional theory that

is not constant in M4, each patch in M4 corresponding to a certain internal manifold

X has a non-trivial image in the scalar manifold of the theory.

Viewed from the higher-dimensional perspective, the fields and in particular the

four-dimensional spacetime metric will vary nontrivially over M4: when moving to-

wards the center of the black hole, the gravitational fields will become stronger and

therefore the local product structure M4 ×X could break down. Kaluza-Klein theo-

ries do not have much to say about what happens in that case, beyond the fact that
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the four-dimensional solutions can be lifted to the higher-dimensional ones (oxidation

of solutions).

However, the effective field-theoretic approach just described does not take into

account a special feature of string theory: extended objects, like the branes, may

carry global degrees of freedom, as well as local degrees of freedom. This is basically

due to the fact that they can wrap themselves around non-trivial cycles of the in-

ternal space X. This wrapping tends to take place at a particular point in M4 and

therefore, from the higher-dimensional perspective, this will be seen as a pointlike

object: a black hole. Thus, we are dealing with two complementary pictures of the

black hole solutions: the first one is based on general relativity, where black holes

emerge as global solutions of the Einstein equations and we shall refer to it as the

macroscopic description (field-theoretic); the other one is based on the entanglement

of an extended object on a cycle of the internal space and does not immediately

involve gravitons. This description will be referred to as microscopic (statistical).

Although it is difficult to understand how these two approaches are related, a

connection must definitely exist as gravitons are closed strings that interact with the

wrapped branes. As these interactions are governed by the string coupling constant

g, we expect the latter to be the link between the two descriptions. In principle, it is

very difficult to determine how this link works and therefore, a realistic comparison

between microscopic and macroscopic results is usually impossible. However, this

is not the case for extremal BPS black holes: it has been shown that the results

obtained by these two alternative descriptions coincide and thus, new insights about

black holes wes obtained.

To understand how the wrapped branes represent themselves in the field-theoretic

description, it is important to realize that the massless four-dimensional fields are as-

sociated with harmonic forms on X (remember that an important step of the Kaluza-

Klein procedure is the expansion of the higher-dimensional fields in terms of fourier

modes). Thus, the higher-dimensional fields φ̂(x, y) decompose into the massless

fields φA(x) according to (schematically)
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φ̂(x, y) =
∑
A

φA(x)ωA(y), (5.1)

where ωA(y) denotes independent harmonic forms on X. Harmonic forms are in one-

to-one correspondence with the so-called cohomology groups consisting of equivalence

classes of forms that are closed but not exact. The number of independent harmonic

forms of a given degree is equal to the Betti numbers, which are fixed by the topology

of the spaces X. The above expression, when substituted into the action of the higher-

dimensional theory, leads to interactions of the fields φA proportional to the following

coupling constants,

CABC... ∝
∫
X

ωA ∧ ωB ∧ ωC . . . . (5.2)

These constants are the so-called intersection numbers.

Due to de Rhams’ theorem, there exists a dual relationship between the harmonic

p-forms ω and the (dX − p)-cycles on X, where dX is the dimension of X. We can

therefore choose a homology basis for the (dX − p)-cycles dual to the basis adopted

for the p-forms. Denoting this basis by ΩA, the wrapping can now be characterized

by writing the corresponding cycle P in terms of the homology basis

P = pAΩA, (5.3)

where pA are integers counting how many times the extended object is wrapped

around each cycle. Form the field-theoretic point of view, pA are the magnetic charges

related to the effective action. The electric charges are already an integer part of the

effective action, because they are associated with the residual symmetries of the

lower-dimensional theory.

5.1 Microscopic description: Black holes in M-

theory

In this section, we will examine microscopically the black holes of M-theory; we will

try to compute the entropy of the black hole S by counting the microscopic degrees
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of freedom. Doing so, the need for the existence of attractors will be obvious. The

work presented here can be found in [12].

The massless content of M-theory is given by the eleven-dimensional supergravity,

which is invariant under 32 supersymmetries. Now, consider the compactification of

this theory on an internal space which is the product of the Calabi-Yau threefold (a

Ricci flat, three-dimensional complex manifold denoted by CY3) and a circle S1. The

reduced, four-dimensional theory is now invariant under 8 supersymmetries that are

encoded into two independent Lorentz spinors. Hence, the effective four-dimensional

field theory will be some version of N = 2 supergravity.

The 5-brane M5 solution of M-theory is the microscopic object that leads to

the appearance of black holes: it is wrapped on a 4-cycle P of the CY3 manifold.

Equivalently, having in mind the link between M-theory and type IIA string theory

(the latter one is the strong coupling limit of the first one), one may study this class

of black holes in type-IIA string theory, where a 4-brane D4 is wrapped on the 4-cycle

P.

As was already explained in the introduction, the massless modes of the effective

field theory correspond to harmonic forms on the CY3 space; they do not depend on

the S1 coordinate. For instance, the KK gauge fieldA0
µ related to the compactification

on S1 corresponds to a 0-form on CY3. This field couples to the electric charge q0,

which is associated with the momentum modes on S1. In addition, there also exist

2-form fields on CY3 that correspond to vector gauge fields AAµ originated from the

3-form in 11-dimensions. These 2-forms are dual to 4-cycles and thus the wrapping

numbers pA, related to the wrapping of the 5-brane on these 4-cycles, appear in the

effective field theory as magnetic charges coupling to the vector gauge fields AAµ .

Because of the fact that the product of three 2-forms defines a 6-form and 6-forms

can be integrated over the CY3 space, there exist non-trivial intersection numbers

CABC that will serve as three-point couplings of the effective field theory.

Now, let us try to count the microscopic degrees of freedom. These degrees are as-

sociated with the massless excitations of the wrapped five-brane on the 4-cycle(M5 is a

(5+1)-dimensional object) and are described by a (1+1)-dimensional superconformal
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field theory (note that the cycle P must correspond to a holomorphically embedded

complex submanifold in order to preserve 4 supersymmetries). Thus, we are dealing

with a closed string with left- and right-moving states. The 4 supersymmetries of this

conformal field theory are reflected in one of these two sectors, say the right-handed

one. As conformal theories in 1+1 dimensions are characterized by a central charge,

both the right- and the left-handed sectors are characterized by central charges (cR

and cL respectively) that can be expressed in terms of the wrapping numbers pA, the

intersection numbers CABC and the second Chern class c2A.

cL = CABCp
ApBpC + c2Ap

A

cR = CABCp
ApBpC + 1

2
c2Ap

A
(5.4)

The above results are really hard to prove and hold only if the wrapping integers

pA are large. Supposing that this is true, every generic deformation of P will be

smooth and thus it will be possible to relate the topological properties of the 4-cycle

with the topological information of CY3.

From general arguments, it follows that we can always find a supersymmetric

state in the right-moving sector with a given momentum q0. The states in the left-

handed sector are not supersymmetric and have a certain degeneracy depending on

the value of q0. Thus, we can speak of towers of degenerate states invariant under 4

supersymmetries, that are built on supersymmetric states in the right-moving sector.

Using Cardy’s formula, the degeneracy of states for fixed, but large momentum (large

as compared to cL), equals e2π
√
|q0|cL/6. This leads to the following expression for the

entropy

Smicro(p, q) = 2π

√
1

6
|q̂0|(CABCpApBpC + c2ApA), (5.5)

where q̂0 = q0 + 1
2
CABqAqB and CAB is the inverse of CAB = CABCp

C . The shifting of

q0 is due to the fact that the electric charges associated with the vector gauge fields AAµ

will interact with the two-brane M2 solution of the eleven-dimensional supergravity.

At this point, we should stress that the term in (5.5) which is proportional to the

triple intersection number CABC is obviously the leading contribution whereas the

others are subleading.
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As shown by equation (5.5), the microscopic expression for the black hole entropy

depends only on the charges. On the other hand, following a field-theoretic calcu-

lation, we may end up with a formula giving the entropy S as a function of other

quantities as well (such as the values of the moduli fields at the horizon). To estab-

lish any agreement between these two descriptions, the scalar fields must take fixed

values at the horizon which may only depend on the charges. As it turns out, this

is indeed the case for extremal black hole solutions: the values taken by the fields

at the horizon are independent of their asymptotic values at spatial infinity and are

given by the ratio of the charges. In the next section, we will demonstrate this in the

context of specific examples.

5.2 BPS attractors

According to the no-hair theorem, there is a limited number of parameters that com-

pletely specify the black hole solutions. These parameters include the mass, the

electric and magnetic charges, the angular momentum and the asymptotic values of

the scalar fields. It appears that for BPS extremal black holes one can prove a new,

stronger version of the no-hair theorem: Black hole solutions near the horizon are

characterized only by those discrete quantities which correspond to conserved charges.

This is basically due to the fact that by the time the scalar field reaches the horizon,

it loses all the information about its initial condition (scalar hair), even though the

dynamics are strictly deterministic. In other words, φ gets a definite value at the

horizon, regardless of its boundary value at infinity that may change continuously.

This solution is called an attractor and its existence is the essence of the attractor

mechanism.

Example: Dilatonic Black Hole attractor

Here we review work by Ferrara and Kallosh. In section 4 of [17], the authors

investigate a simple example of the attractor mechanism given by the N=4 dilatonic

black holes of the heterotic string theory in a supersymmetric spacetime. Our aim is
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to verify that the dilaton field φ obtains a definite value on the black hole horizon,

depending only on the electric q and magnetic p charges of the black hole and not on

its value at the spatial infinity.

The lagrangian to be considered is the part of the SO(4) version of the N=4

four-dimensional supergravity action without an axion:

L =
1

16

√
−g
(
R− 2∂µφ∂µφ+

1

2

(
e−2φF µνFµν + e2φḠµνḠµν

))
(5.6)

where F µν is the electromagnetic field tensor and Ḡµν is an electromagnetic dual field

tensor given by

Ḡµν =
i

2
√
−g

e−2φεµνλδF̄λδ. (5.7)

Note that F µν and Ḡµν are independent fields. The equations of motion of the theory

described above are the following

∇ρ∂
ρφ =

1

4
(e−2φF µνFµν − e2φḠµνḠµν) (5.8)

∂ρ(
√
−ge−2φF ρ

ν ) = 0 (5.9)

∂ρ(
√
−ge−2φḠρ

ν) = 0 (5.10)

Gµν = 8πTµν = 1
2

(
gµν∂ρφ∂

ρφ− 1
4
gµν(e

−2φF ρσFρσ − e2φḠρσḠρσ)

+(e−2φF ρ
µFµρ + e2φḠρ

µḠµρ − 2∂µφ∂νφ)
(5.11)

For extreme supersymmetric dilatonic black holes, the fields are built out of two

harmonic functions H1 and H2:

ds2 = e2Udt2 − e−2Udx2

e−2U = H1H2, e2φ = H2

H1
,

F = dψ ∧ dt, Ḡ = dχ ∧ dt,

ψ = ±H−1
1 , χ = ±H−1

2 .

(5.12)

Using the gauge field equations (5.9) and (5.10), we determine the harmonic functions

in terms of isotropic coordinates

H1 = e−φ0 +
|q|
r
, H2 = eφ0 +

|p|
r
, (5.13)
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where φ0 is the matter field at infinity. Then, the scalar field equation (5.8) becomes

φ′′ +
2φ′

r
=

1

2

(H ′1)2H2
2 − (H ′2)2H2

1

H2
1H

2
2

. (5.14)

The above equation along with the outputs of the Einstein equation (which are too

large to display) gives the following result

φ =
1

2
lnH2(r)− 1

2
lnH1(r), (5.15)

where the explicit forms of H1 and H2 are given by (5.13). Calculating now the

quantity e−2φ, we find that

e−2φ =
H1

H2

=
e−φ0 + |q|

r

eφ0 + |p|
r

. (5.16)

If we plot e−2φ with respect to r for various φ0, we note that all curves converge to

the value |q||p| on the horizon(r=0) regardless of the value of the field at infinity.

Figure 5.1: Evolution of the dilaton from various initial conditions at infinity to a

common fixed point at r=0

The mass M and the dilaton charge Σ of the black hole are related to the U(1)

electric |q| and magnetic |p| charges

M =
1

2
(e−φ0 |p|+ eφ0|q|), Σ =

1

2
(e−φ0|p| − eφ0|q|). (5.17)
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Thus, we note that the dilatonic black hole is completely characterized by three inde-

pendent parameters: the two charges q, p and the value of the dilaton at infinity φ0.

But, for the black hole solution near the horizon, the value of the dilaton at infinity

becomes irrelevant, as it is totally determined by the electric and magnetic charges

e−2φ
∣∣∣
fixed

= |q|
|p| .

Example: N=2 supergravity attractor

Ferrara, Kallosh and Strominger introduced the N=2 supergravity attractor in

their original paper [14]. Later on, this attractor was further studied in [14, 15, 16].

In what follows, we will study the supersymmetric black holes arising from four-

dimensional N=2 supergravity theories coupled to n N=2 vector multiplets. For

simplicity, we will only consider static, spherically symmetric, asymptotically flat

black hole solutions.

The supergravity theory is defined in term of a projective covariantly holomorphic

section (XΛ(φi),− i
2
FΛ(φi)) of an Sp(2n+2) vector bundle over the scalar manifold

parameterized by φi, Λ, i = 1..n. Given this section, one can construct the entire

scalar and vector parts of the action. In some cases the theory can be described in

terms of a covariantly holomorphic function F(X) of degree two

FΛ(φi) = FΛ(X(φi)) =
∂F (X)

∂XΛ
. (5.18)

We also introduce the inhomogeneous coordinates

ZΛ =
XΛ(φi)

X0(φi)
, Z0 = 1, (5.19)

which are considered to be invertible (special geometry: [13]). For such theories, it

was shown that a static, spherically symmetric metric admitting supersymmetries

can be written as

ds2 = −e2Udt2 + e−2U
(
c4 dr2

sinh4(cr)
+

c2

sinh2(cr)
dΩ2

S2

)
, (5.20)

where U is the wrapping parameter and c is the extremality parameter. For spheri-

cally symmetric solutions, U is a function only of a radial coordinate r.
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The dynamics of the bosonic sector of this theory are controlled by the following

four-dimensional, pure geodesic lagrangian density [15]

L = −R
2

+ gij̄∂µφ
i∂νφ̄

j̄ + IΛΣ(φ)FΛ
µνF

Σµν +RΛΣ(φ)FΛ
µνF̃

Σµν , (5.21)

where IΛΣ(φ) and RΛΣ(φ) are functions of φ and gij̄ is the metric on the scalar

manifold. If we now integrate the lagrangian (5.21) overRt×S2 and we discard infinite

integration constants, we get the following effective one-dimensional lagrangian

L = (U ′(r))2 + gij̄φ
′iφ̄
′j̄ + e2UVBH(φ, q, p)− c2. (5.22)

The first and last terms of the above lagrangian come from the Einstein-Hilbert term,

while the second term comes from the kinetic term of the scalar fields. The black

hole effective potential VBH comes from the vector fields terms and it is positive semi-

definite. Note that the theory described by this effective lagrangian gives the same

equations of motion as the initial theory only if the following Hamiltonian constraint

is satisfied

(U ′(r))2 + gij̄(φ
i(r))′(φ̄j̄(r))′ + e2UVBH(φ, q, p) = c2. (5.23)

VBH is the effective black hole potential and it can be identified with the symplectic

invariant I1 of the special geometry

VBH = I1 = |Z|2 + 4gij̄∂i|Z|∂j̄|Z|. (5.24)

Z is the central charge and is given by

Z = e
K(φφ̄

2 (XΛqΛ − FΛp
Λ) = (LΛqΛ −MΛp

Λ), (5.25)

where K is the Kähler potential. LΛ and MΛ form a symplectic section (LΛ,MΛ)

Λ = 1, .., n and satisfy the symplectic constraint i(L̄ΛMΛ − LΛM̄Λ) = 1. Using some

properties of the special geometry and of the central charges and their covariant

derivatives, the lagrangian (5.22) can be brought to the following form for an extremal

solution (c=0)
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L =
(

(U ′ ± eU |Z|)2 +
∣∣φi′ ± 2eUgij̄∂j̄|Z|

∣∣2 ∓ 2
d

dr
(eU |Z|)

)
. (5.26)

The equations of motion of this theory

U ′′ = e2UVBH , φ′′ + Γijkφ
j′φk

′
= e2Ugij∂jVBH (5.27)

coincide with the equations of motion of the initial theory upon satisfaction of the

following first-order flow equations

U ′ = eU |Z|, (5.28)

φi
′
= 2eUgij̄∂j̄|Z|. (5.29)

The value of the ADM mass turns out to be M = eU |Z|. If we now differentiate

the last equation with respect to r and substitute U’ given by equation (5.28), we

obtain a second-order differential equation that involves only φ. This equation can be

thought of as a generalized geodesic equation describing the evolution of the scalar

field as it approaches the center of the black hole. Setting initial conditions for φi at

infinity (r=∞), we fix φi
′

in terms of the charges by (5.29), while φi evolves until it

runs on a fixed point at the horizon

φi|fixed =
qi

q0
. (5.30)

Thus, we’ve reached the same conclusion as for dilatonic black holes: the values of

the scalar fields at the fixed point depend on the charges, but not on the asymptotic

values of the scalars. Note that according to the behavior of the central charge at

the horizon

DiZ|fixed = 0, (5.31)

where Di is the covariant derivative with respect to the Kähler connection. Using

properties of the special geometry, we find that

DiZ|fixed = 0 ⇒ ∂VBH
∂φi

∣∣∣
fixed

= 0. (5.32)

Therefore, we are also allowed to conclude that the effective potential is extremized

(only) at the fixed points of the scalar manifold. Thus the argument can be reversed:
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the fixed values of the moduli are defined by extremization of the potential. To find

whether the extremum is a maximum or a minimum, we have to check the sign of

second derivative of the potential

∂̄ī∂jVBH

∣∣∣
fixed

= 2GījVBH

∣∣∣
fixed

. (5.33)

Thus, the sign of the second derivative is defined by the sign of the metric on the

scalar manifold at the critical point: if the metric is positive, the potential reaches

its unique minimum at the fixed point; if the scalar metric is singular or it changes

the sign, the potential is extremized outside the range of applicability of the special

geometry.

5.3 Extended Supergravity attractors

In this section, we will discuss four-dimensional N > 2 supergravities theories such

that their scalar fields parameterize a coset manifold G/K. Such theories were studied

by Ferrara, Kallosh an Gibbons in [15].

Note that for N ≤ 4, the divisor group decomposes into K = Kaut × Kmatter,

where Kaut = SU(N) × U(1) is the automorphism subgroup of K and Kmatter is

determined by the matter content of the four-dimensional theory(if any).

The graviphoton central charges ZAB and the matter charges ZI are given by the

following equations

ZAB = fΛ
ABqΛ − hΛABp

Λ,

ZI = fΛ
I qΛ − hΛIp

Λ, (5.34)

where qΛ and pΛ are the electric and magnetic charges respectively and (fΛ
AB, hΛAB)

and (fΛ
I , hΛI) form symplectic sections (A,B are indices in the antisymmetric rep-

resentation of Kaut and I is in the fundamental representation of Hmatter). The

covariant derivatives of the central charges with respect to the geometric formulation
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of extended supergravities are as follows.

∇ZAB =
1

2
Z̄CDPABCD + Z̄IP I

AB,

∇ZJ =
1

2
Z̄CDP I

CD + Z̄JP JI , (5.35)

where PABCD, P I
AB and P JI are the components of the coset veilbein P

P =

 PABCD PABJ

PJAB P IJ

 (5.36)

Because of the manifestly symplectic form of the supergravity, there exists a simple

and completely general expression for the black hole potential

VBH =
1

2
ZABZ̄AB + ZIZ̄I . (5.37)

In order to proceed, we will need to consider two cases:

• N ≥ 2 supergravities with Z = 0. The effective black hole potential is now

given by VBH = 1
2
ZABZ̄AB and the covariant derivative of the central charges

is ∇ZAB = 1
2
Z̄CDPABCD. If we now calculate the derivative of the potential

and we set it to zero in order to get the extremum

∂iVBH =
1

4
Z̄CDZ̄ABPABCD,i +

1

4
ZABZCDPABCD

,i = 0, (5.38)

we find that the above equation has solutions only if the central charge matrix

has only one non-zero eigenvalue, while all the others vanish (this is due to the

fact that PABCD is completely antisymmetric).

• Matter coupled N ≥ 2 supergravities with Z 6= 0. In this case, if we set

the derivative of the black hole potential (5.37) to zero, we obtain the following

∂iVBH = 1
4
Z̄CDZ̄ABPABCD,i + 1

4
ZABZCDPABCD

,i

+1
2
Z̄IP I

AB,iZ̄AB + 1
2
ZIPAB

I,i ZAB = 0. (5.39)

The above equation is solved, if the central charge matrix has only one non-zero

eigenvalue, while all the others and the matter charges vanish.

Thus, the construction set for the BPS attractor applies also for the case of N-

extended supergravity theories.
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5.4 Non-BPS attractors

The attractor mechanism seems to be related to the extremality rather than to the

supersymmetry property of a given solution, as an attractor behavior can also be

found for non-BPS extremal solutions (only if the effective black hole potential is

extremized on the horizon and the Hessian matrix ∂i∂jVBH |horizon is positive definite).

Although the BPS and non-BPS cases share some common features, the non-BPS

extremal black holes are not expected to satisfy a first order differential equation, as

this is a feature that arise as a consequence of the supersymmetry transformations

of the fermions. Instead, one expects them to satisfy a second order differential

equation. However, as was shown by Ceresol, D’Auria and Ferrara in [16], there is

also a first-order formalism, that identically solves the equations of motion and can

be related to the attractor behavior. This is where “fake superpotentials” W and

“fake” supergravities come into the discussion; fake supergravities are theories that

although are not supersymmetric in general, they present first-order equations for

the metric and the scalar fields that “look like” BPS equations. These equations

originate from the vanishing action of certain operators on spinor parameters.

The lagrangian (5.22)

L = (U ′(r))2 + gij̄φ
′iφ̄
′j̄ + e2UVBH(φ, q, p)− c2,

is quite general, as it can describe any four-dimensional theory of gravity provided

that the effective black hole potential is tuned with the theory under considera-

tion. For instance, for appropriate VBH , the above lagrangian can describe non-

supersymmetric theories and supersymmetric theories for which the hamiltonian con-

straint admits multiple solutions. The only difference now is that the effective black

hole potential is not equal to VBH = |Z|2 + 4gij̄∂i|Z|∂j̄|Z| as before. For vanishing

extremality parameter c, the Hamiltonian constraint

(U ′(r))2 + gij̄φ
′iφ̄
′j̄ + e2UVBH(φ, q, p) = 0

can be solved by a real superpotential W (φ, φ̄) such that

U ′ = ±eUW, φi
′
= ±2eUgij̄∂j̄W, VBH = W 2 + 4gij̄∂iW∂jW. (5.40)

68



The equations of motion (5.27) are identically satisfied, if the above equations are

true. So, we have reached the conclusion that there exists a class of non-BPS extremal

black holes that satisfy first-order equation. These first-order equations do not imply

anymore preserved supersymmetries as they do not coincide with the killing spinor

equations and the supersymmetry rules. That is the reason why we refer to them as

“fake” supergravities. The critical points are now specified by DiW |fixed = 0.

At this point, we should make two final comments. Firstly, we should note that

the BPS attractor, discussed in the previous section, can be seen as a special case

of the non-BPS case with W = Z. Also, we have to emphasize the reason why we

restrict our discussion to extremal solutions. This is because it is really difficult to

find a first-order equation that solves the equations of motion for the scalar fields if

c 6= 0 (for the wrap-factor, U, this can be done easily, even if c 6= 0).

5.5 Attractors and Entropy

In order to understand the black hole entropy in terms of the attractor mechanism,

Ferrara and Kallosh introduced in [17] a principle of a minimal central charge Z

and they found a formula giving the Bekenstain-Hawking entropy S. Later on, their

formulation was generalized in terms of the effective black hole potential in order to

include the non-BPS case. In four dimensions, the entropy S (in Planck units) is

given by

S =
A

4
= πV fixed

BH , (5.41)

For extremal BPS black hole VBH = |Z|2+|DiZ|2 ⇒ V fixed
BH = |Zfixed|2 as at the

fixed point DiZ|fixed = 0. For the non-BAPS case, VBH = W 2 + 4gij̄DiWDjW ⇒

V fixed
BH = W 2 as DiW |fixed = 0.

Example: Dilatonic Black Hole entropy

In the context of four-dimensional dilatonic black holes, the minimal central charge

principle goes as follows. The modulus of he central charge |Z| is equal to the mass

M given by equation (5.17)
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M = |Z| = 1
2
(e−φ0|p|+ eφ0|q|).

If we extremize the modulus of the central charge with respect to the string coupling

constant g = eφ0 ,

∂|Z|
∂g

=
1

2

∂

∂g

(1

g
|p|+ g|q|

)
= − 1

g2
|p|+ |q| = 0, (5.42)

we find that the extremum of |Z| occurs at

g2
fixed =

∣∣∣p
q

∣∣∣. (5.43)

Inserting this value into the central charge formula given by (5.5), we find that

|Zfixed| =
√
pq and therefore the black hole entropy, given by equation (5.41), is

S =
A

4
= π|Zfixed|2 = π|pq|. (5.44)

This result coincides with the results obtained by completely different methods.

Example: Supergravity N=2 Black hole entropy.

In general, for N=2 supergravity theories coupled to n N=2 vector multiplet, the

modulus of the central charge is again equal to the mass M of the black hole, but in

this case the mass is a function of the charges |p| and |q| and of the scalar field φi

through the holomorphic symplectic section (XΛ(φi),− i
2
FΛ(φi))

M =
∣∣∣Z(φi, φ̄i, q, p)

∣∣∣ = (LΛqΛ −MΛp
Λ), (5.45)

where LΛ and MΛ form a symplectic section (LΛ,MΛ) that satisfies the symplectic

constraint i(L̄ΛMΛ − LΛM̄Λ) = 1 (Λ = 1, .., n).

Now, following the same procedure as before, we differentiate the modulus of the

central charge with respect to the moduli and we set it equal to zero in order to

extremize.

∂

∂φi
|Z| = 0 (5.46)

It turns out that φi|fixed is a function of the charges and therefore Zfixed = Z(p, q).

As a consequence, the Bekenstein-Hawking entropy S = π|Zfixed|2 and the area are

just functions of p and q.
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Appendix A

Bosonic content of supergravity

theories in various dimensions

In what follows, we will need the concept of the little group. Assuming a (D+1)-

dimensional spacetime with Minkowskian signature, the little group is the maximal

subgroup of SO(D,1) that leaves the momentum of a particle invariant. Thus, if the

particle is massless, the little group is S0(D-1) and if the particle is massive, it is

S0(D). As was shown by Wigner in 1939 [6], just by knowing the representations of

the little group, we can construct the representations of the full SO(D,1).

The bosonic content of the 11-dimensional supergravity is a graviton with 44

degrees of freedom lying in the 2nd rank, symmetric and traceless representation of

the little group SO(9) and a 3-form gauge field with 84 degrees of freedom lying in the

3rd rank, antisymmetric representation of SO(9). In the following table, we reduce

the graviton and the 3-form in order to find the bosonic content of supergravity

theories in less than 11 dimensions. To do this, we follow two simple rules related to

the reduction of SO(D-1) representation into representations of SO(D-2):

1. when we reduce a (D+1)-dimensional graviton, we get a D-dimensional gravi-

ton, a KK gauge field and a dilaton.

2. when we reduce a (D+1)-dimensional n-form, we get a D-dimensional n-form

and a D-dimensional (n-1)-form.
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D=11 D=10 D=9 D=8 D=7 D=6 D=5 D=4 D=3

graviton gMN 1 1 1 1 1 1 1 1 1

KK field A[1] 1 2 3 4 5 6 7

dilaton φ 1 2 3 4 5 6 7 8

axions A[0] 1 3 6 10 15 21 28+8

3-form A[3] 1 1 1 1 - -

2-form A[2] 1 2 3 4+1 5 -

1-form A[1] 1 3 6 11 16+5 21

0-form A[0] 1 4 10 21 42 63+21

We observe that in 7 dimensions a new phenomenon occurs and the reason is dual-

ization. In 7 dimensions the little group for massless fields is S0(5) and accordingly,

the 3-form is dual to a 2-form. The same thing happens both in 5 and 3 dimensions:

in 5 dimensions, the 2-form is dual to a 1-form and in 3 dimensions, the 1-form is

dual to a 0-form. Note also the existence of (-). This is due to the fact that S0(n)

does not have representations with more that n indices antisymmetrized.

Finally, note that the reduced theory is much more complicated than the initial

one. This is true in compactification on any manifold and is due to the fact that

the number of fields proliferates as the dimensions reduce. This is the main reason

why physicists spend so much time studying higher-dimensional theories instead of

concentrating just on four dimensions.
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